
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ISMRM ANZ 4th Annual Chapter Meeting 
 

Peer-Reviewed Abstracts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2 

Table of Contents 

Oral Session 1: Revolutionising MRI technology ................................................................. 4 

Study design for mobile Point of Care MR (PoCeMR) network in Australia – Zhaolin Chen ......... 5 

Advancing Ultralow Field MRI with Deep Learning Reconstruction – David Waddington ............ 6 

Improving the robustness of deep learning segmentation models by analysing intensity 
distribution shifts between data sets – Fernanda Ribiero ........................................................... 8 

Automatically Resampling Oblique-Acquired MRI to Enable Robust and Accurate QSM 
Algorithms – Ashley Stewart ..................................................................................................... 10 

Sub-Population Universal Pulses: A Feasibility Study – Igor Tyshchenko .................................... 12 
 

Oral Session 2: Advances in Neuroimaging ...................................................................... 14 

Increased Connectivity from Ventral Temporal Cortex to Perisylvian Language Areas During 
Non-Word Reading – Vicky He .................................................................................................. 15 

Optimising functional brainstem imaging of sympathetic drive with ultra-high field MRI – 
Rebecca Glarin .......................................................................................................................... 17 

Structure-function relationships in the human hippocampus: new insights using track-weighted 
dynamic functional connectivity – Marshall Dalton ................................................................... 19 

In vivo microstructural border delineation between areas of the human cerebral cortex using 
magnetic resonance fingerprinting (MRF) residuals – Shahrzad Moinian ................................... 21 

Data-driven in-vivo parcellation of human subcortex – Tonima Ali ............................................ 23 
 

Oral Session 3: Clinical applications of advanced MRI ...................................................... 23 

Quantitative MRI: defining measurement uncertainty for detecting treatment response in 
longitudinal imaging of prostate cancer – Yu-Feng Wang .......................................................... 26 

Leukoencephalopathic changes after treatment for breast cancer and their association with 
serum neurofilament – Gwen Schroyen .................................................................................... 28 

Early identification of cerebral small vessel disease in obstructive sleep apnoea patients using 
magnetic resonance spectroscopy: a pilot study – Arunan Srirengan ......................................... 30 

Hippocampal Glx in RRMS: A potential therapeutic indicator in fingolimod and injectables – Oun 
Al-Iedani ................................................................................................................................... 32 

Personalised quantitative susceptibility mapping in the identification of traumatic brain injury 
neurodegeneration – Karen Caeyenberghs ................................................................................ 34 

 

ECR Data Blitz Session ...................................................................................................... 36 

Deep learning-based mutual and modality-specific information disentanglement of MR and PET 
for low-dose PET image processing robust to varying levels of dose reduction – Cameron Pain . 37 

3D Basis Encoded Excitation (3DBEE) – Negin Yaghmaie ............................................................ 39 

Interactive AI-assisted labelling for abdominal MRI organ segmentation – Xincheng Ye ............ 41 

Efficient Network for Diffusion-Weighted Image Interpolation and Accelerated Shell Sampling – 
Eric Pierre ................................................................................................................................. 43 



 3 

An Experimental Study of MRI Reconstruction using Transformer Networks - Mevan Ekanayake
 ................................................................................................................................................. 45 

Multi-parametric MRI to measure the oxygen partial pressure and the fluid viscosity of the 
vitreous humour of the eye - Xingzheng Pan ............................................................................. 47 

Computationally efficient multi-echo QSM - Korbinian Eckstein ................................................ 49 

Establishing baseline diffusion and susceptibility measurements for deep grey matter structures 
- Manon Levayer ....................................................................................................................... 49 

Altered network topology in patients with visual snow syndrome: a resting-state 7 Tesla MRI 
study - Myrte Strik .................................................................................................................... 53 

Functional and structural brain network development in children with attention deficit 
hyperactivity disorder - Shania Soman ...................................................................................... 55 

 

Poster Presentations ........................................................................................................ 57 

Mapping the brain functional correlates of cue-reactivity in moderate-to-severe cannabis use 
disorder: A functional neuroimaging study – Arush Arun .......................................................... 58 

Investigating the computational reproducibility of Neurodesk - Thanh Thuy Dao ...................... 60 

Adiabatic pulse approximation using a Fourier approach - Edward Green ................................. 62 

Using quantitative susceptibility mapping (QSM) for clinical correlations of iron-rich deep grey 
matter of relapsing-remitting multiple sclerosis patients - Ibrahim Khormi ............................... 64 

Probabilistic Fixel-based White Matter Atlas - Lea Vinokur ....................................................... 66 

A Feasibility Study of Semi-supervised Brain Tumour Segmentation using a Privacy Preserving 
Federated Deep Learning Framework - Xinqian Wang ............................................................... 68 

2D UTE imaging for rapid 23Na MRI - Chengchuan Wu .............................................................. 70 
 
 
 
 

 

 

 

 

 

 
 



 4 

 

 

 

 

 

 

 

 
 

 

 

Oral Session 1: Revolutionising MRI technology 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5 

Study design for mobile Point of Care MR (PoCeMR) network in Australia – Zhaolin 
Chen 

Zhaolin Chen1, Shenjun Zhong1, Parisa Zakavi1, Kh Tohidul Islam1, Gail Durbridge2, Helen 
Kavnoudias3,9, Christen Barras4, Shawna Farquharson5, Andrew Dwyer6, Paul M. Parizel7,8, 

Meng Law3,9, Markus Barth10, Katie McMahon11, and Gary Egan1 

1 Monash Biomedical Imaging, Monash University, Victoria; 2 Herston Research Imaging Facility, 
University of Queensland; 3 Alfred Hospital, Victoria; 4 Royal Adelaide Hospital, South Australia; 
5Australian National Imaging Facility; 6 South Australian Health and Medical Research Institute, 
South Australia; 7 Royal Perth Hospital (RPH), Western Australia; 8 Medical School, University of 

Western Australia (UWA); 9 iBRAIN Monash University; 10 Centre for Advanced Imaging, University 
of Queensland. 11 School of Clinical Science, Herston Imaging Research Facility, Queensland 

University of Technology. 
Introduction 
Mobile point-of-care medical devices, such as point-of-care low-field MRI (PoCeMR), have the potential 
to revolutionise how people receive medical treatment1. Mobile devices can provide timely and 
adequate care to people in need and open the opportunity to address healthcare inequality in rural and 
remote locations2. Recent studies in brain injury patients suggest that PoCeMR can be successfully 
deployed in intensive care units3,4. This study aims to establish a nationwide capability of point-of-care 
MR imaging using artificial intelligence inspired improved image quality to assess the clinical utility for 
stroke and traumatic brain injury. 
 
Methods 
Healthy subjects as well as stroke and brain injury patients will undergo MR scanning using the 65mT 
ultra-low-field Swoop (Hyperfine Inc. USA) and routine superconductive scanners (1.5T and 3T) at five 
sites in Australia (Monash University, University of Queensland, The Alfred Hospital, Royal Adelaide 
Hospital, and Royal Perth Hospital). Human Research Ethics have been approved for both healthy 
subjects and patients to participate in this research. The data acquisition and storage protocol include 
collection of image pairs (T1-weighted, T2-weighted, FLAIR and DWI), and storage of raw (k-space) 
datasets. To share and aggregate data from multiple sites, all data will be de-identified and sent to a 
centralized XNAT over a secure channel to comply with the ethics and data privacy policies. 
Results 
Initial scans from the Swoop scanner demonstrate the feasibility to acquire T1, T2, FLAIR, and DWI 
images. Careful positioning of the subject is required for optimal image quality and workflow efficiency. 

 
Figure 1: Preliminary scans from the Swoop Hyperfine mobile MR scanners in the national PoCeMR network. 
Discussion and Conclusion 
The aim of the PoCeMR network is to directly address a National Gap in the current Australian imaging 
capability to support the diagnostic imaging requirements for rural and remote Australians. The network 
architecture will facilitate knowledge sharing, develop a raw data repository for the research community, 
and facilitate the translation of point of care mobile MR scanners into routine clinical practice. The ability 
of artificial intelligence models to enhance image quality and clinical usability will be investigated. 
References 
[1]Karlen, W. (Ed.). (2015). Mobile Point-of-Care Monitors and Diagnostic Device Design (1st ed.). CRC Press. 
[2]Commonwealth of Australia (2018) Availability and Accessibility of Diagnostic Imaging Equipment around 
Australia, Department of the Senate. [3]Sheth KN, Mazurek MH, Yuen MM, et al. (2021) Assessment of Brain Injury 
Using Portable, Low-Field Magnetic Resonance Imaging at the Bedside of Critically Ill Patients. JAMA Neurol. 
78(1):41-47. [4] Mazurek, M.H., Cahn, B.A., Yuen, M.M. et al. (2021) Portable, bedside, low-field magnetic 
resonance imaging for evaluation of intracerebral hemorrhage. Nat Commun 12, 5119. 
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Advancing Ultralow Field MRI with Deep Learning Reconstruction – David 
Waddington 

 
David E. J. Waddington1, Efrat Shimron2, Shanshan Shan1, Neha Koonjoo3 Matthew S. Rosen3 

1Image X Institute, Faculty of Medicine and Health, The University of Sydney, Australia  
2Department of Electrical Engineering and Computer Sciences, UC Berkeley, CA, USA 

3A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, MA, USA 
 
Introduction 

Portable MRI scanners that operate at very low magnetic fields are increasingly being 
deployed in clinical settings. However, the intrinsic low signal-to-noise ratio (SNR) of these 
low-field MRI scanners often necessitates many signal averages, and therefore, excessively 
long acquisition times. Advanced reconstruction strategies based on deep learning could 
dramatically shorten acquisition times in low-field MRI when combined with undersampling. 
Here, we compare leading data-driven1 and model-driven2 deep learning frameworks to gold-
standard compressed sensing (CS) for the reconstruction of ultralow field MRI data. 
 
Methods  

Phantom experiments were performed on a 6.5 mT MRI scanner with a quadrature head 
coil and a brain-shaped phantom.3 A 3D Cartesian balanced-steady state free precession 
(bSSFP) sequence with TR/TE = 22/11 ms and matrix size 64 x 75 x 25 (Readout x Phase Encode 
1 x Phase Encode 2) was used for acquisition with 256 signal averages. K-space was 
retrospectively 4× undersampled in the phase-encode dimensions with a Poisson-disc (PD) 
mask. Human data were prospectively acquired with a 2× undersampled PD mask and 40 
signal averages (~7 min. acquisition). 

Data-driven AUTOMAP1 and model-driven Unrolled Optimization2 reconstruction 
networks were implemented as described in Refs 4 and 5, respectively. A training corpus of 
50,000 brain image/k-space pairs were used for network training with k-space data 
undersampled with PD masks at the desired reduction factors (R=2 or 4). To reconstruct 3D 
data, a 1D FFT was applied along the fully-sampled readout dimension and trained networks 
were applied to the undersampled hybrid k-space. 

For CS reconstruction, sensitivity maps were calculated with ESPIRiT, and L1-wavelet CS 
reconstruction was performed using SigPy.4 Normalized root-mean-square error (NRMSE) and 
structural similarity (SSIM) reconstruction metrics were calculated relative to the fully-
sampled ground-truth acquisition. 
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Results 
Reconstructions of 4× undersampled phantom data are shown in Figure 1a. Reconstruction 

with AUTOMAP yielded the highest/best 
structural similarity metric, while CS 
reconstruction gave the lowest/best NRMSE 
metric. CS and unrolling network images 
demonstrate sharper reconstructed edges. 
Human brain images prospectively acquired 
with PD undersampling (R=2) and 
reconstructed via AUTOMAP are shown in 
Figure 1b. 
 
Discussion and Conclusion 

Undersampling is an effective means to 
shorten long MR acquisitions. Our findings 
demonstrate that AUTOMAP can improve 
structural similarity, as compared to CS, when 
reconstructing undersampled data. 
Prospective deployment of PD 
undersampling will enable the clinical utility 
of deep learning reconstruction to be tested 
on low field MRI scanners. These results will 
inform the development of faster imaging 
strategies for portable MRI. 

 
References 
1. Zhu et al., Nature, 555, 487-492 (2018). 
2. Zhang et al. IEEE CVPR, 1828-1837 (2018). 
3. Sarracanie M et al., Sci Rep., 5, 15177 (2015). 
4. Koonjoo et al., Sci Rep., 8248 (2021). 
5. Shan et al., arXiv, 2205.10993 (2022). 
6. Ong F et al., ISMRM Ann. Meeting, 4819 (2019). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: (a) Comparison of image 
reconstruction accuracy for Compressed 
Sensing (CS), AUTOMAP, and Unrolling 
Network techniques with R=4. (b) 
AUTOMAP-based reconstruction of an R=2, 
sub-7-minute scan of the human brain at 6.5 
mT. The central 6 slices are shown. 
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Improving the robustness of deep learning segmentation models by analysing 
intensity distribution shifts between data sets – Fernanda Ribiero 

Fernanda L Ribeiro1, Xincheng Ye1, Trevor A Mori2, Lawrence J Beilin2, Markus Barth1, and 
Steffen Bollmann1 

1School of Information Technology and Electrical Engineering, The University of Queensland; Brisbane; Australia 
2Medical School, The University of Western Australia; Perth; Australia 

Introduction 
Deep learning could revolutionize medical imaging applications. However, progress is 
currently held back by the lack of model generalizability and reliability. One such drawback is, 
for example, the very fact that deep learning models' accuracy often deteriorates when they 
are deployed in a new/unseen dataset. Indeed, we recently deployed a pre-trained deep 
learning model [1] for abdominal adipose tissue (AAT) segmentation in appropriately pre-
processed abdominal images and found that the model did not perform as expected (Figure 
1a). The original dataset on which the model was trained is not openly available; hence, it is 
not possible to match our data to the training data. Here we propose an analysis of intensity 
distributions to determine the optimal range of intensity values for each class prediction of 
an existing deep learning model without fine-tuning or retraining.  
 
Methods  
We used an abdominal Dixon MRI dataset to determine how intensity value distributions 
affect the performance of FatSegNet, the pre-trained deep learning model for visceral and 
subcutaneous fat segmentation. This dataset includes abdominal images from 975 Gen2 
participants at 27-years of age from the Raine Study in Perth, WA, using a Siemens Magnetom 
Espree 1.5T (Siemens AG, Erlangen, Germany). FatSegNet was originally trained using the 
Rhineland Study dataset [1], which includes abdominal MR Dixon scans. Specifically, the 
model was trained on 38 manually annotated datasets. For AAT segmentation, 60 slices per 
participant were manually labelled into three classes: subcutaneous adipose tissue (SAT), 
visceral adipose tissue (VAT), and bone with neighbouring tissues.  
 
Results and Discussion 
Figure 1a shows the original data from one participant with the segmentation generated by 
FatSegNet. As can be seen, the model fails to appropriately segment SAT and VAT, which can 
be better appreciated by inspecting the overlapping distributions of intensity values across 
the three classes (Figure 1b). Following that, we found that by scaling the original image, it 
was possible to improve the segmentation results (Figure 1c). This finding is likely because 
the new distributions of intensity values peak in different intensity range for SAT and VAT 
labels (Figure 1d). Our preliminary result suggests that it may be possible to find the optimal 
range of input values for each class of a segmentation task, which could extend the usability 
and generalizability of deep learning models in medical imaging applications.  
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Figure 1 - ATT segmentation results. Label 0/black: bone with neighbouring tissues, Label 1/grey: SAT, and Label 
2/white: VAT. 

References 
[1] S. Estrada et al., “FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation 
on abdominal dixon MRI,” Magn Reson Med, 2020. 
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This work was supported by the Australian Research Council (LP200301393). The MRI data were acquired by Envision Medical 
Imaging, Perth WA. The Raine Study was funded by the NH&MRC (Mori, APP 1102106). 
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Automatically Resampling Oblique-Acquired MRI to Enable Robust and Accurate 
QSM Algorithms – Ashley Stewart 

 
 
Ashley Stewart1, Korbinian Eckstein1, Thanh Thuy Dao1, Kieran O’Brien2, Josef Pfeuffer2, Jin Jin2, Markus 

Barth1, Steffen Bollmann1 
1School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; 

2Siemens Healthineers Pty Ltd., Brisbane, Australia 

Introduction: In an MRI acquisition, oblique slice orientations are often used to visualise 
clinically relevant anatomical regions and optimise the scanning field of view and duration. 
In Quantitative Susceptibility Mapping (QSM), which aims to estimate the magnetic 
susceptibility of tissues, many emerging algorithms assume that the main magnetic field is 
oriented axially through the imaging volume, which is not the case for oblique acquisitions. 
This assumption prevents accurate susceptibility quantification and introduces pervasive 
artefacts in susceptibility maps, limiting the practical uptake of the method. Recent work 
has identified resampling slices to an axial orientation prior to QSM processing as a 
solution1. In this work, we implement this rotate-and-resample method to enable 
automated processing of oblique acquisitions and publish it as part of the QSMxT software 
toolbox2,3. We test the implementation in silico using the QSM challenge head phantom, 
measuring differences in the effect of orientation on susceptibility quantification across 
brain regions, identifying that small sources such as veins remain challenging to quantify 
accurately after resampling. Methods: Data: The QSM challenge 2.0 in silico head 
phantom4 was used for this experiment and is based on a segmented MP2RAGE dataset with 
0.64 mm3 isotropic resolution down-sampled to 1 mm3 using k-space cropping and 
TEs=4/12/20/28 ms. The magnitude and phase were augmented by rotation about the x-axis 
to produce new datasets with effective B0 directions at 5° increments up to 45°. 
Processing: Magnitude and phase data were resampled to an axial affine through the 
complex domain using nilearn prior to QSM processing using TGV-QSM5. The susceptibility 
maps were then resampled back to the original orientation. In QSMxT, this process occurs 
automatically when the obliquity, measured using nibabel, is greater than a user-defined 
threshold. Measurements: RMSE was measured across brain regions defined by 
segmentations provided with the original head phantom.  
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Results: RMSE measured in the head 
phantom indicates that the rotate-and-

resample method (RotPrior) provides stable 
RMSEs across brain regions except in blood 

and CSF (see Figure 1). Conversely, no 
corrections (NoRot) cause increasing RMSE 
with the degree of rotation, particularly in 
deep gray matter (dGM) nuclei.Figure 1: 

RMSE with rotation, with and without 
rotate-and-resample using TGV-QSM.    

Difference imaging visualises the spatial distribution 
of changes in susceptibility quantification and 
smearing artefacts in dGM regions as the degree of 
rotation increases   (see   Figure  
 2). 
Figure 2: QSM computed using TGV-QSM on 
simulated data under various degrees of rotation, 
including difference images computed with respect 
to the zerodegrees   rotated  
 result. 
 
 
Discussion and Conclusions: Our experiment validates that the rotate-and-resample 
method1 results in stable susceptibility quantification across most brain regions. Further, 
small, high-susceptibility sources such as blood in veins were found to be more challenging 
to recover after resampling, which may be explained by 
reduced phase accuracy after interpolation in the complex domain. Our publicly available 
implementation of the method in QSMxT makes it available and practical for users wishing 
to reconstruct QSM for acquisitions with oblique slice orientations. References: 1] 
Kiersnowski et al. ISMRM 2021, Abstract 794. 2] Stewart et al., Mag. Reson. Med., 2022. 3] Stewart et al., QSMxT, GitHub, 
2022. 
4] Marques et al., Mag. Reson. Med., 2021. 6] Langkammer et al., NeuroImage, 2015. 
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Sub-Population Universal Pulses: A Feasibility Study – Igor Tyshchenko 
Igor Tyshchenko1, Jin Jin2, Simon Lévy2, Bahman Tahayori3, Leigh Johnston1 

1Biomedical Engineering & Melbourne Brain Centre Imaging Unit, The University of 
Melbourne, Australia, 2Siemens Healthcare Pty Ltd, Australia, 3The Florey Institute of 

Neuroscience and Mental Health, Australia 
 
Introduction 
Universal parallel transmission (pTx) pulses are limited in performance because they 
encompass a large population distribution. We hypothesised that designing universal pulses 
(UP) based on sub-populations with reduced anatomic variability would improve the 
homogeneity and SAR performance in head imaging. 

Methods  
A generic 8-ch pTx coil model was tuned and matched for the Duke V3.0 (IT’IS, Zurich, 
Switzerland) anatomy. The three most SAR-sensitive head model parameters were selected: 
head breadth (HB), head length (HL) and Y-shift [1]. All parameters were modelled as Gaussian 
random variables with means 𝜇!  and standard deviations 𝜎!  of a Caucasian population [2]. 
Several sub-populations were studied by reducing the 𝜎"#, 𝜎"$ and 𝜎% to 50% and 25% of 
their original values. 21 representative anatomies were generated for each population 
following the multivariate and univariate unscented transform sampling scheme [3]. For each 
sub-population, a 5kT-UP inversion pulse was computed using the active-set MATLAB 
algorithm (The Mathworks, Natick, MA) [4, 5], based on the 𝐵&'-maps and 𝑄-matrices derived 
from FDTD simulation (Sim4Life by ZMT, Zürich, Switzerland). An additional six test anatomies 
unseen by the pulse design algorithm were selected at ±𝜎!  for each parameter. The SAR 
distribution was studied by fitting a second-order polynomial and generating 10( samples [1]. 

Results & Discussion 

 
Figure 2. Left: pulse performance as measured by the normalised root mean square error (NRMSE) on the target 

flip angle. Right: SAR distribution normalised to the baseline value. UP-100 Population-50 represents UP 
designed based on 100% sub-population evaluated using 50% sub-population.  

Reducing the population size results in an NRMSE improvement (Fig.1 left). The smaller 
volume of interest describing representative anatomies explains this reduction. By contrast, 
halving the population distribution reduces the SAR variability by around 40% (Fig.1 right). 
This means a less restrictive safety margin can be used, making the pulse design more SAR 
efficient. 
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Conclusion 
This study demonstrates that sub-population UPs have the potential to improve head imaging 
at 7T. Our proof-of-concept results indicate that pTx pulse design based on sub-populations 
of anatomies reduces SAR variability and improves performance. 
 
References 
[1] Le Garrec et al. MRM. 2017. [2] Ball et al. AE. 2011. [3] Shao et al. MRM. 2015. [4] Hoyos-
Idrobo et al. IEEE T-MI. 2014. [5] Gras et al. JMR. 2015. 
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Increased Connectivity from Ventral Temporal Cortex to Perisylvian Language Areas 
During Non-Word Reading – Vicky He 

 
Vicky He, Bahman Tahayori, David Vaughan, Graeme Jackson, David Abbott, 

Chris Tailby, and the Australian Epilepsy Project (AEP) 
The Florey Institute of Neuroscience and Mental Health, University of 

Melbourne 

Introduction 
Neurobiological models of cognition hold that the degree to which information flows 
between different brain areas is modulated as a function of cognitive demands1. 
Psychophysiological interaction analysis (PPI) is a regression based method for evaluating 
such modulations in functional magnetic resonance imaging (fMRI) data2. Here we applied 
PPI methods to investigate the task dependent modulation of connectivity from the Visual 
Word Form Area (VWFA) during execution of a pseudoword rhyming task. We hypothesised 
that the VWFA would connect more strongly with perisylvian language areas during 
pseudoword reading than during a non-language baseline condition. 

Methods 
One hundred and thirty two AEP participants completed a block design fMRI task 
contrasting pseudoword rhyming blocks (whether two visually presented non-words would 
rhyme if pronounced aloud) against visual pattern comparison blocks (whether two patterns 
composed of forward and backslashes matched). First level analysis was applied using the 
iBrain toolbox3 with SPM4. The PPI regression includes the main effect of task, the main 
effect of the seed (VWFA) time course, the interaction between the two, and six head 
motion parameters. To accurately capture such interaction, it has been suggested to 
deconvolve the haemodynamic response function (HRF) from the seed time course, multiply 
it by the task regressor, and then convolve with the HRF5. The PPI was implemented using 
the gPPI (generalised PPI) toolbox6. 

Results 
Figure 1 shows the SPM-t image from the second level analysis on the PPI term. There is 
extensive activation with a peak at the seed location. This indicates a misspecification of the 
model as the main effect of the seed is included in the regression, and therefore the seed 
should not appear significant in the interaction. It was suggested by Di and colleagues7 that 
this could be due to imperfect deconvolution and 
convolution of the seed time course, with mean centering the 
task regressor when forming the interaction proposed as a 
potential fix. Applying this modification eliminated the diffuse 
suprathreshold distribution seen in Figure 1, revealing discrete 
suprathreshold clusters in left posterior temporal and left 
inferior frontal cortex (Figure 2). The revised results supported 
our hypothesis that the VWFA connects more strongly with classical language areas during 
non-word reading. 
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Discussion 
Our findings utilising the revised PPI method are consistent with models of the reading 
system8 and language9, as well as the idea of dynamic modulation of information flow 
according to cognitive demands1. Furthermore, the results support the observations of Di 
and colleagues7, that with deconvolution, it is essential for the task regressor to be mean 
centred to avoid spurious results. 

Conclusion 
Using the revised PPI we found cognitive dependent re-weighting of connections in 
language-related networks. These results also point to the importance of constructing PPI 
models appropriately. 

References 
1] Park & Friston. Science. 2013. 2] Friston et al. NeuroImage. 1997. 3] Abbott & Jackson. NeuroImage. 2001. 4] Friston et 
al. SPM. 2007. 5] Gitelman et al. NeuroImage. 2003. 6] McLaren et al. NeuroImage. 2012. 7] Di et al. Hum Brain Mapp. 
2017. 8] Fiez & Petersen. PNAS. 1998. 9] Hickok & Poeppel. Nat Rev Neurosci. 2007. 
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Optimising functional brainstem imaging of sympathetic drive with ultra-high field 
MRI – Rebecca Glarin 

Rebecca Glarin1,2, Donggyu Rim3, Luke A Henderson4 & Vaughan G Macefield2,3 

1Melbourne Brain Centre Imaging Unit, University of Melbourne; 2 Baker Department of Cardiometabolic Health, University 
of Melbourne; 3Baker Heart and Diabetes Institute, Melbourne; 4Brain and Mind Centre, University of Sydney. 
 
Introduction 
Sympathetic outflow is generated within specific nuclei in the brainstem and hypothalamus, 
with contributions from other subcortical and cortical sites. This outflow is responsible for 
many regulation processers. Muscle Sympathetic Nerve Activity (MSNA) contributes to the 
beat-to-beat regulation of blood pressure through its control of arteriolar diameter within the 
highly vascularised skeletal muscle bed. Skin Sympathetic Nerve Activity (SSNA) contributes 
to thermoregulation through cutaneous vasoconstriction, vasodilation and sweat release. 
This activity can be detected as MSNA and SSNA and recorded directly via intraneural 
microelectrodes. Previously the lab developed the techniques of MSNA-coupled and SSNA-
coupled functional magnetic resonance imaging (fMRI), using 3 Tesla MRI. Further extension 
of this method is being undertaken at Ultra-high field on a 7T MRI. This promises higher spatial 
resolution, particularly of the brainstem and hypothalamus, than we could previously achieve. 
We aim to functionally identify the brainstem nuclei responsible for generating sympathetic 
drive through the use of ultra-high field (7T), high-resolution fMRI coupled with direct 
recordings of sympathetic nerve activity to muscle and skin. 
 
Methods  
Recording procedures: A tungsten microelectrode was inserted percutaneously into a muscle 
fascicle of the common peroneal nerve at the fibular head of 17 participants (7 MSNA, 10 
SSNA). Neural activity was amplified (gain 20 000, bandpass 0.3-5.0 kHz) using a low-noise 
headstage (NeuroAmpEX, ADInstruments, Australia) and spontaneous bursts of MSNA or 
SSNA identified and burst amplitudes measured. 
Imaging procedures: Blood Oxygen Level Dependent [BOLD] contrast - gradient echo, echo-
planar images were collected in the axial plane, on a 7T Magnetom Plus (Siemens Healthcare, 
Erlangen, Germany) with a 1Tx32Rx channel head coil (Nova Medical, Wilmington, MA, USA). 
The fMRI sequences are run adopting a 4s-ON, 4s-OFF triggered protocol (Fig 1). This is with 
consideration of the timing of both neural conduction and central haemodynamic delays and 
the noise created by the sequence gradients on the nerve signal when recording (Fig 2).                      
Fig 2. Neural and imaging signal  

                considerations 
  
Fig 1.           
Sequence 
parameters 

 
 
Fig 3. 
Brainstem  
EPI axial  
acquisition. 
1 mm voxels 
TR=4 s 
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Results 
Preliminary analysis has been performed in 3 of 7 successful recordings in healthy 
participants. In these axial sections MSNA-coupled increases in BOLD activation were 
detected at the level of the rostral ventrolateral medulla (RVLM) in each participant.  
Conclusion 
These preliminary results indicate that, using MSNA-coupled fMRI, we can detect increases in 
BOLD signal intensity in RVLM with 1 mm isotropic voxels. The improved signal to noise and 
higher resolution available at ultra-high field will allow us to image the small medullary nuclei 
responsible for generating sympathetic drive with higher precision. 
References 
Macefield VG & Henderson LA. NeuroImage. 2019. 
Acknowledgments the facilities, scientific and technical assistance from the National Imaging Facility, a National 
Collaborative Research Infrastructure Strategy capability, at the Melbourne Brain Centre Imaging Unit, The University of 
Melbourne. This work was supported by a research collaboration agreement with Siemens Healthineers. 
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Structure-function relationships in the human hippocampus: new insights using 
track-weighted dynamic functional connectivity – Marshall Dalton 

 
Marshall A. Dalton1,3, Jinglei Lv2,3, Arkiev D’Souza3,4, Fernando Calamante2,3,5 

1School of Psychology, Faculty of Science, University of Sydney, Australia 
2 School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Australia 

3Brain and Mind Centre, University of Sydney, Australia 
4Translational Research Collective, Faculty of Medicine and Health, The University of 

Sydney, Australia 
5Sydney Imaging, University of Sydney, Australia 

Introduction 
The hippocampus is a brain structure that is critical for healthy memory function1. Recent 
technical and methodological advances have allowed us to conduct increasingly detailed 
investigations of structural connectivity (SC) and functional connectivity (FC) of the human 
hippocampus in-vivo using MRI. However, SC and FC of the human hippocampus are most 
often analysed independently, thereby limiting our ability to understand structure-function 
relationships of cortico-hippocampal connectivity in the human brain. To address this gap, we 
investigated the relationship between SC and FC of the human hippocampus using track-
weighted dynamic functional connectivity (TW-dFC) mapping2.  
 
Methods  
In brief, we leveraged TW-dFC to fuse SC and dynamic FC data into a quantitative 4D image 
(i.e., with spatial+temporal information), which was used to characterise structure-function 
relationships. Ten subjects were selected from the HCP 100 unrelated subject database. For 
each subject, we used DWI data to generate SIFT2-weighted whole-brain streamlines and 
isolate only those connecting the hippocampus with the rest of the brain (‘hippocampus 
tractogram’) using methods described elsewhere3. We calculated the TW-dFC map for the 
hippocampus tractogram by assigning each streamline a ‘dynamic functional weighting’ given 
by the (sliding window) functional correlation between resting state BOLD fMRI data at its 
end-points2. In essence, this method projects grey matter functional connectivity information 
to the intersecting white matter pathways. TW-dFC maps were computed and the TW-dFC 
data were further analysed using independent component analysis (ICA; using FSL MELODIC 
software4). The ICA results were used to identify clusters within the hippocampus based on 
the time-series associated with each hippocampal endpoint in the TW-dFC maps. In essence, 
this allowed us to characterise, in a data-driven manner, spatially distinct functional clusters 
along the anterior-posterior axis of the hippocampus and identify the distinct cortical 
networks associated with each functional cluster.  
 
Results 
Our method was effective in identifying differentiable functional clusters within the human 
hippocampus. The results of ICA revealed multiple functional clusters along the anterior-
posterior and medial-lateral axes of the hippocampus. Each cluster was functionally 
associated with different cortical areas. Group level analysis confirmed that separate 
functional clusters within the hippocampus were associated with different cortical networks, 
each associated with their own dynamic functional fingerprint. 
 
Discussion 
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Our results revealed how specific regions within the human hippocampus display anatomical 
and dynamic functional connectivity with distinct cortical areas. We found strong functional 
associations between the posterior hippocampus and medial parietal regions and, in contrast, 
between the anterior hippocampus and temporal brain areas. Strikingly, different functional 
clusters within the hippocampus displayed distinct patterns of cortical connectivity. For 
example, separate clusters in the hippocampus displayed preferential dynamic functional 
connectivity with medial parietal, occipital and temporal areas. Taken together, these 
observations provide new detailed insights into structure-function relationships within the 
human hippocampus and have important implications for theories of human hippocampal 
function along its anterior-posterior axis5. 
 
Conclusion 
Mapping structure-function relationships in the human hippocampus will help us develop 
more detailed and integrated models of human memory and its biological basis. Overall, our 
results contribute to ongoing efforts to characterise the relationship between human 
hippocampal SC and FC with implications for understanding hippocampal function in health 
and dysfunction in disease. 
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Introduction  
The current in vivo MRI resolution is several orders of magnitude larger than the scale of 
microstructural components in the brain tissue, requiring costly multi-contrast image 
acquisition and complex models for inferring microstructural features from in vivo MRI.1 We 
previously demonstrated that spatiotemporal MR fingerprinting2 residual signals3 contain 
rich descriptive area-specific representation for each voxel, leading to the development of a 
machine learning model for in vivo cortical parcellation.3 The study relied on a brain atlas4 
to provide probabilistic masks of cortical regions to label the training samples. Here, we 
investigated the utility of area-specific information in MRF residuals to develop an 
automated atlas-free analysis pipeline for in vivo cortical border delineation in individuals.  

Methods   
We acquired 3D EPI-MRF scans from six healthy participants aged 31±4 years using a 7T MR 
scanner (Siemens Healthcare, Erlangen, Germany), and calculated MRF residual signal and 
the corresponding autocorrelation profile per voxel, as detailed previously.3 Our basis was 
that the differences between MRF residual signals would be smaller for voxels which are 
located in a single cortical region, compared to those across microstructurally different 
cortical borders. A total of 300 2D paths along the cortical ribbon in each individual scan 
were extracted from sagittal (see figure 1a), coronal and axial slices of 3D MRF images from 
six participants, using the Juelich maximum probability map of cortical areas.4 For each 
voxel along the path, we created a 3x3 2D kernel surrounding the voxel of interest, 
excluding the non-GM tissue. We then measured the average Euclidean distance (ED) 
between the MRF residual signal of the centre voxel and all other kernel voxels as we 
traversed each path. The ED values outside two standard deviations from the mean distance 
values from each distance profile were considered as the peak distance values. The spatial 
location of the voxels corresponding to the peak ED values were examined to see if they 
were located within a 2-voxel radius from the border between any two cortical areas on the 
Juelich maximum probability map of the participant.   

Results and discussion  
Figure 1a depicts an example path crossing the premotor area BA6 and primary motor areas 
BA4p and BA4a overlayed on an MRF scan from one participant, with residual distance 
profile for the path in Figure 1b. As an example, the spatial location of three of these peak 
voxels on the Juelich maximum probability map of the individual is illustrated in Figures 1c-
e. We found that the first peak (at path indices 122-123 in Figure 3c) corresponds to the 
border between areas BA6 and BA4p. Additionally, the second (at path indices 134-15 in 
Figure 1d) and third (at path indices 141-13 in Figure 3e) peaks correspond to the border 
between BA4a and BA4p and between BA6 and BA4a, respectively. Across all participants, 
we observed that 90% of the border voxels detected were located at the 2-voxel radius of 



 22 

the border between two areas on the Juelich maximum probability map. The co-localisation 
of the peak ED values on the MRF residual distance profiles and the border voxels on the 
Juelich maximum probability map suggests the presence of microstructural information in 
the MRF residual signals, providing a tool for accurate in vivo voxel-wise cortical parcellation 
in individuals.   
Figure 1. (a) An example sagittal path crossing 
through premotor area BA6 and primary motor areas 
BA4a and BA4p. The blue arrow shows direction of 
travel through the path. (b) The MRF residual 
distance profile along this path with the peak 
Euclidean distance (ED) values indicated by the 
asterisks. (c-e) The voxel locations corresponding to 
the peak ED values at path indices 122, 135 and 142, 
respectively, indicated by the crosshairs on the 
participant’s cerebral cortex maximum probability 
map.   

Conclusion  
Using MRF residual signals we demonstrated the feasibility of developing an 
automatic atlas-free border delineation between microstructurally distinct regions of 
the human cerebral cortex in vivo. This study sets the foundation for future work to 
develop robust unsupervised machine learning-based in vivo cortical parcellation in 
individuals.  
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Introduction: Human subcortex comprises multiple deep grey matter (DGM) structures, many with 
several nuclei and specialised sub-regions dedicated to highly specific functions. Detailed knowledge 
on the anatomy and topography of these regions are fundamental to understanding the integrative 
connectivity patterns within DGM structures and to map the specialised cortico-DGM circuits. 
Histologydriven brain atlases1–3 provide detailed delineation of these sub-regions, however, those 
cannot be directly applied to in-vivo MRI studies. Here, we integrate the information from anatomy, 
diffusion microenvironment, and directions of white matter (WM) fibres within DGM, from multi-contrast 
MRI, to segregate the nuclei and specialised sub-regions of DGM structures in a normal population 
leading towards the delineation of specialised brain networks.  

Methods: Minimally pre-processed T1w, T2w, and Diffusion MRI (dMRI) data obtained at 3T were 
downloaded from Human Connectome Project4–6 for 10 healthy subjects. For each subject, fractional 
anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and myelin index 
(T1w/T2w) were computed following the processing pipeline in 7. Additionally, orientation of the 
dominant WM fibre tracts were computed within each voxel8. 20 million streamlines were generated and 
the volumetric maps were combined by computing track-weighted imaging maps9 with 0.7mm isotropic 
super-resolution9. Parametric maps were warped to a tissue-unbiased template10 and DGM regions 
were defined using FastSurfer11,12. Components contributing to >5% of the total variance of the 
combined dataset were identified by principal component analysis, and hierarchical k-means clustering 
was employed on the principal components to segregate the sub-regions within each DGM structure.  
Results and Discussions: Figure 1 show an example of parcellated DGM structures (a, c) next to 
delineations from human brain atlas1 (b, d) at equivalent coronal planes, illustrating the parcellations for 
caudate, putamen, globus pallidus, nucleus accumbens, and thalamus. The resemblance between (a, 
c) and (b, d) is clearly visible at both locations. Focusing only on putamen (outlined) for brevity, arrows 
show sub-regions coloured in pink, blue and orange that correspond to the fundus of the putamen, the 
putamen, and the ‘external putamen’, respectively. The first two sub-structures have distinct 
neuroanatomy and are recognised as specialised sub-regions within putamen1. Of particular note, our 
data driven approach also identified the ‘external putamen’, a region which has only recently been 
identified by neuroanatomists as having distinct anatomical and functional properties13,14 and is yet to 
be added to extant human brain atlases.   
These results provide evidence that each of the specialised subregions of DGM structures are 

discernible by unique combination of diffusion properties, WM fibre 
orientations, and myelin content specific to that region. Additionally, 
our multi-contrast MRI analysis is sensitive to these attributes and can 
segregate these regions exclusively from the MRI-derived data without 
any functional or anatomical prior. Tian et al. has recently 
demonstrated  the topographic organisation of human subcortex using 
MRI-driven functional connectivity gradients15. Our results show 
similarities to the major clusters obtained by this work, when WM fibre 
orientation is incorporated. However, the use of TW imaging maps has 
substantially increased the resolution of our data, which has enabled 
the identification of many smaller regions within DGM structures, 
fundus of the putamen for example, which were not identifiable by 
previous MRI-based parcellations.    

 
 

Conclusion: This study aims to develop a publicly available MRI data- 
driven parcellation of human subcortex. Our detailed delineation of the specialised sub-regions within 
DGM structures can be directly applied to subject-specific and/or group average MRI dataset.  The 
findings from this work may improve the overall understanding of DGM sub-structures in-vivo, the 
specialised brain networks involving DGM, and allow connectome analysis with higher specificity.   

   
d

) ( a   

( c )   

( b )   

( d )   

Figure 1: Multi-contrast MRI data-
driven parcellation (a, c) next to 
sections (b, d) from human brain 
atlas1 at equivalent coronal planes 
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Introduction 
Prostate cancer (PCa) is the most commonly diagnosed cancer among males in Australia. 1 
Recurrence of PCa following radiation therapy is not uncommon but can be treated with 
salvage therapies if detected prior to development of metastases. The current standard of 
care post-treatment monitoring involves measurement of prostate specific antigen levels in 
blood serum, which lacks accuracy and specificity in detecting recurrent disease. 2 
Quantitative MRI (qMRI) parameters have shown potential for providing non-invasive imaging 
biomarkers of treatment response and may enable early detection of recurrent PCa. 3, 4 
Measurement uncertainties in the qMRI parameters, however, could impact the reliability to 
detect treatment-related changes. 5 An in vivo test-retest study was therefore conducted with 
the aim to establish thresholds for reliable detection of treatment-related changes in 
longitudinal monitoring of prostate cancer with qMRI. 
 
Methods  
Test-retest images were acquired in 9 Ca patients and 6 healthy volunteers on two 3T MRI 
scanners (Prisma and Skyra, Siemens Healthineers, Erlangen, Germany). The apparent 
diffusion coefficient (ADC), diffusion (D), perfusion fraction (f), hypoxia score (HS), T1, 
pharmacokinetic modelling of dynamic contrast enhanced (DCE) MRI and R2* parametric 
maps were obtained. Radiomic features were extracted from T2w images and the qMRI 
parameter maps. The repeatability coefficient (%RC) was calculated for region of interest 
(ROI) and voxel-wise measurements of the parametric maps in the tumour and benign tissues 
in the peripheral and non-peripheral (PZ and nPZ) prostate zones. The repeatability of DCE-
derived qMRI parameters was estimated by propagation of uncertainties in T1. 
 
Results 
The %RC of ADC, D, HS and their radiomic features were significantly different between the 
PZ and nPZ (two-tailed t-test p<0.05) and also between tumour and benign tissue types 
(p<0.05). The %RC of f, T1, R2* and their radiomic features were not significantly different 
between anatomical zones and between tumour and benign tissue types. DCE-derived qMRI 
parameters and T1 had relatively lower %RC than DWI-derived parameters and R2* (range 
from 0.8% to 10.5% compared to 4.7% to 40.0% for ROI measurements). Measurement 
uncertainties were larger when test-retest variations were assessed using voxel-wise analysis 
compared to the ROI measurements. 
 
Discussion 
The uncertainty of qMRI parameters derived from DWI (all except f) was found to be higher 
in the PZ, likely due to the closer proximity to the rectum and vulnerability to rectal gas-
induced artefacts. The higher uncertainty of ADC and D in the tumour compared to benign 
tissues was likely due to the smaller ROI size. In comparison to the ROI-based approach, the 
higher uncertainties in voxel-wise measurements of parametric and feature maps, likely due 
to lower SNR and image registration, could be a challenge in mapping of treatment response.  
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Conclusion 
Thresholds of change required to distinguish true treatment-related changes from 
measurement uncertainties can be formulated for the qMRI parameters, however these 
thresholds should be defined separately for anatomical zones and tissue types for DWI-
derived parameters and features. The remaining qMRI parameters and features can have a 
single threshold measured from the whole prostate. DCE-derived qMRI parameters and T1 
have relatively higher precision and could potentially be more reliable in detecting treatment-
related changes. The thresholds established in this study can enable discrimination of true 
treatment-related changes from measurement uncertainties in future longitudinal imaging 
studies to develop robust quantitative imaging biomarkers of treatment response.  
 
Acknowledgements 
This project was supported by NHMRC grant APP1126955, Sydney West TCRC – Partner Program 2019 and CI NSW 
Translational Program Grant TPG182165. 
 
References 
1. Health et al.  Canberra. 2021 
2. Vicini et al. J Urol. 2005 
3. Sun et al. Australas Phys Eng Sci Med. 2019 
4. Wang et al. J Med Imaging Radiat Oncol. 2021 
5. Shukla-Dave et al. J Magn Reson Imaging. 2019 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 28 

Leukoencephalopathic changes after treatment for breast cancer and their 
association with serum neurofilament – Gwen Schroyen 

Gwen Schroyen1,2,3, Charlotte Sleurs1,2,4,5
, Tine Ottenbourgs3, Nicolas Leenaerts1,6,7,8, 

Michelle Melis1,2,3, Ann Smeets2,5,9, Sabine Deprez1,2,3, Stefan Sunaert1,3,10 

 

1) KU Leuven, Leuven Brain Institute, Leuven, Belgium 
2) University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium 
3) KU Leuven, Department of Imaging and Pathology, Translational MRI, Leuven, Belgium 
4) Tilburg University, Department of Cognitive Neuropsychology, Tilburg, The Netherlands 
5) KU Leuven, Department of Oncology, Leuven, Belgium  
6) KU Leuven, Department of Neurosciences, Mind-Body Research, Leuven, Belgium 
7) KU Leuven, University Psychiatric Center, Leuven, Belgium 
8) University Hospitals Leuven, Department of Psychiatry, Leuven, Belgium 
9) University Hospitals Leuven, Department of Oncology, Surgical Oncology, Leuven, Belgium 
10) University Hospitals Leuven, Department of Radiology, Leuven, Belgium 
 
Introduction 
Earlier case-studies1 have provided evidence of chemotherapy-induced leukoencephalopathy 
in patients with breast cancer, but prospective research is missing. We investigated 
leukoencephalopathy pre- and post-chemotherapy and its association with a serum 
neuroaxonal damage marker. 
 
Methods  
This prospective cohort study included 40 patients receiving chemotherapy for non-
metastatic breast cancer, as well as 39 chemotherapy-naïve patients and 40 healthy women 
age- and education matched (32-64 years of age), from 2018-2021. Data acquisition included 
fluid-attenuated inversion-recovery (FLAIR; 183 sagittal slices, voxel size = 1 mm isotropic, 
TR/TE = 4800/340 ms, FA = 40°, FOV=256×256, number of signals averaging NSA = 2)) 
magnetic resonance imaging (MRI) on a 3T Philips Achieva system (32-channel phased-array 
head coil) for lesion volumes2,3 (total, juxtacortical, periventricular, infratentorial and deep 
white matter) and serum neurofilament light chain (sNfL) before, three months- and one-year 
post-chemotherapy, or at matched timepoints. Differences between groups in changes 
throughout time were compared using robust mixed-effects modelling and associations 
between total lesion volume and sNfL were analysed using linear regression. 
 
Results 
Stronger increases in periventricular and deep white matter lesion volumes were observed 
shortly post-chemotherapy compared to chemotherapy-naïve patients and in the deep white 
matter compared to healthy women. A stronger increase in sNfL concentration was observed 
shortly post-chemotherapy compared to both control groups, showing stable levels for both 
time-points, while a decrease was observed compared to healthy women one-year post-
chemotherapy. sNfL concentrations measured shortly or one-year post-chemotherapy were 
associated with lesion volume one-year post-chemotherapy (or at matched time intervals), 
while baseline levels or changes were not. 
 
Discussion 
This was the first prospective study to evaluate changes in leukoencephalopathy and 
neuroaxonal damage, as measured with NfL, in patients treated for non-metastatic breast 
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cancer. These results underscore the possibility of chemotherapy-induced 
leukoencephalopathy several months post-treatment, as well as the potential of sNfL as a 
prognostic marker for peripheral/central neurotoxicity, such as the observed 
leukoencephalopathy. 
 
Conclusion 
Future studies evaluating the association between serum NfL, lesion load, and cognitive 
impairment will be critical in elucidating neurocognitive impairments after cancer therapy. 
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Introduction. Cerebral small vessel disease (CSVD) is an incurable, slowly progressing 
disease that affects the small vessels in the brain and can lead to cognitive impairment and 
dementia later in life1. Obstructive sleep apnoea (OSA)2, a common sleep-breathing 
disorder, is an under-recognised cause of CSVD. The diagnosis and monitoring of CSVD rely 
on imaging findings1. However, only severe cases of CSVD in moderate-severe OSA patients 
can be identified with conventional MRI protocols3. Thus, we proposed to determine 
whether proton MR spectroscopy (1H MRS) can assist in identifying earlystage CSVD in 
patients with OSA by quantifying brain metabolites associated with neuronal integrity (N-
acetylaspartate (NAA)), membrane metabolism (glycerophosphocholine (GPC)), energy 
metabolism (creatine (Cr)), neurotransmitter activity (glutamate (Glu)) and glial cell 
inflammation (myo-inositol (mI))4.  
  
Methods. Fourteen participants (11 women, 46–64 years) underwent brain MRI (Philips 
Achieva 3TX). Five participants had no OSA [apnoea hypopnoea index (AHI) < 10 events/hr 

sleep], and nine patients matched for age and BMI had untreated OSA [AHI ≥ 10 events/hr 
sleep]. T1-weighted and FLAIR anatomical scans were qualitatively analysed using STRIVE 
criteria5, with each participant receiving a STRIVE CSVD score based on the presence of four 
imaging markers of CSVD (white matter hyperintensities (WMH), cerebral microbleeds, 
silent brain infarction and enlarged perivascular spaces).1H MRS was obtained from the 
prefrontal cortex and frontal periventricular white matter to quantify brain metabolite 
concentrations with reference to water using jMRUI V.4. Pearson correlation evaluated the 
relationship between variables, while Mann-Whitney U tests assessed differences between 
groups.  
  
Results. One or more STRIVE CSVD features were present in similar proportions of controls 
(2/5) and OSA patients (5/9). STRIVE CSVD score did not differ between groups (OSA: 
0.6±0.5, controls: 0.4±0.5; p>0.99), nor did WMH volume and count (p=0.52 and p=0.50, 
respectively), suggesting earlystage CSVD in both OSA and control groups. In the prefrontal 
cortex, higher AHI was associated with increased GPC/H2O (r=0.60, 95% CI [0.01 to 0.88]), 
NAA/H2O (r=0.64, 95% CI [0.06 to 0.90]) and ml/H2O ratios (r=0.70, 95% CI [0.16 to 0.91]), 
but not with Glu/H2O or Cr/H2O. Amongst OSA patients, there were no significant 
differences in metabolite concentrations between participants with and without STRIVE 
CSVD imaging features, in either prefrontal cortex or frontal periventricular white matter.   
  
Discussion. Abnormal prefrontal cortex metabolites may indicate early OSA-related CSVD 
injury, with elevated GPC and mI levels reflecting increased membrane turnover and the 
presence of neuroinflammation. Results demonstrate that mild to severe OSA contributes to 
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the pathogenesis of CSVD. The absence of difference in metabolite concentrations between 
participants with and without STRIVE CSVD imaging features suggest that abnormally 
elevated metabolic concentration is also commonly seen in in OSA patients without imaging 
features and could be an early indicator of neurovascular injury not captured by 
conventional MRI protocol.   
  
Conclusion. The preliminary findings of this ongoing study support the use of brain MR 
spectroscopy to complement conventional MRI protocol for diagnosing early-stage CSVD, 
and reinforce the need for early intervention in OSA.  
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Introduction 
Disease-modifying therapies (DMTs) can reduce relapses and mitigate the long-term damage 
in people with relapse-remitting MS (pw-RRMS)1. Magnetic resonance spectroscopic (MRS) 
studies have shown a positive effect of DMT on neurometabolites in pw-RRMS, which 
correlates with maintaining axonal metabolic function2. Hippocampal demyelination and 
dysregulation of a major excitatory neurotransmitter (glutamate+glutamine; Glx) are 
associated with memory impairment in pw-RRMS3. To date, evaluating the longitudinal DMT 
effect on hippocampal metabolism in pw-RRMS has not been investigated. 
 
Methods  
A total of 65 pw-RRMS on fingolimod (N=36) or injectable (glatiramer acetate (GA) or 
interferon (IFN), N=29), were age and sex matched to HCs (N=44). All MRI and hippocampal 
MRS (voxel size=30x15x15mm3)(Fig.1) were acquired from pw-RRMS and HCs cohorts at 
baseline and 2 years follow-up. Segmentation of brain MRI/S was performed by FSL/SPM12. 
All pw-RRMS underwent cognitive, fatigue and mental health assessment as well as Expanded 
Disability Status Scale (EDSS). 
 
Results 
Pre- and post-mean hippocampal Glx levels were significantly altered in the MS cohorts 
(p≤0.05): fingolimod (1.47±0.51 vs 1.06±0.39) and injectable (1.33±0.06 vs 1.16±0.04) but HCs 
remained stable (1.161±0.46 vs 1.158±0.35). However, post-hoc tests revealed fingolimod is 
associated with a larger statistically significant reduction in hippocampal Glx(p=0.003) 
compared to injectable(p=0.01) and a trend to be lower compared to HCs(p=0.09)(Fig.2). 
Hippocampal NAA levels showed statistically significant increase in fingolimod cohort 
(p≤0.0001) compared to HCs over the 2-yrs follow-up(Fig.3). 
 
Discussion 
The current study is the first longitudinal in-vivo investigation comparing the impact of 
fingolimod, IFN-b or GA on the hippocampal metabolism in RRMS patients. Glx plays a critical 
role in important metabolic functions including oxidative energy supply to neurons/astrocytes 
and production of GABA. Excessive Glx can lead to neurotoxicity, neurodegeneration, and 
dysfunction in the glutamatergic pathway in addition to abnormal neuronal signalling. 
 
Conclusion 
Fingolimod has a stronger impact on hippocampal Glx and NAA brain profiles than injectable 
DMTs. Our results suggest that MRS might be used as a therapeutic indicator. 
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Fig.1. T1-MR images in 3 planes demonstrating the 
hippocampal voxel size and position (white box) and 
tissue segmentation (WM-yellow, GM-green and CSF-
blue and lesion in red). 

Fig.2. The comparison of hippocampal Glx 
levels in RRMS treatments cohorts 
(fingolimod and injectable) and HCs group 

Fig.3. The comparison of 
hippocampal NAA levels in RRMS 
treatment cohorts (fingolimod and 
injectable) and HCs group over 
2time points (baseline and 2yrs 
follow-up). 
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Introduction: Emerging evidence suggests that traumatic brain injury (TBI) is a major risk 
factor for developing neurodegenerative disease later in life. Recently, quantitative 
susceptibility mapping (QSM) has been shown to be a promising tool in the investigation of 
iron concentration in neurodegenerative diseases. QSM has been used by an increasing 
number of studies in investigations of pathophysiological changes in mild TBI [1]. However, 
very few clinical QSM studies have been conducted so far. In the present study, we examined 
changes in magnetic susceptibility in moderate-to-severe TBI patients, to better characterize 
the underlying mechanisms of neurodegeneration at the level of individual patients. 
 
Methods: Chronic moderate-severe TBI patients (N=4) and healthy controls (N=12) 
underwent QSM (multi-echo), and anatomical MRI (MPRAGE, voxel size = 0.8mm isotropic) 
on a 3T Siemens PRISMA scanner. Using the fully automated QSMxT framework [2], we 
reconstructed the multi-echo susceptibility maps using two-pass QSM. We extracted values 
of magnetic susceptibility in grey matter regions across the whole brain and determined if 
they clinically deviated from a reference healthy control group [Z-score < -3.29 or > 3.29 , 
relative to the control mean]. 
 
Results: Our findings revealed that each TBI patient had a unique pattern of clinically 
significant changes in magnetic susceptibility. These changes included both increases and 
decreases in magnetic susceptibility. For example, one patient had an increase in magnetic 
susceptibility in the right inferior frontal and paracentral gyri but a decrease in the right 
frontal pole. Another patient exhibited decrease in magnetic susceptibility only, in a network 
of areas including the temporal pole and precentral and lingual gyri on the left, and 
supramarginal and inferior frontal gyri on the right (see Figure 1). 
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Figure 1. Brain regions with substantial changes in magnetic susceptibility in TBI patients [Z-score <> ±3.29 relative to the 
control mean]. Top: Violin plots showing the distribution of magnetic susceptibility measures in the control sample, with the 
magenta triangles ▲ indicating the measures of the selected region in the patient. Bottom: the sampled areas are depicted 
in green. Magenta outline (if present) reveals portion of region resected by a lesion (not sampled). The lesion (if 
present/visible) appears in blue. L, left; R, right. 

Discussion & Conclusion: 

Our findings in GM susceptibility values in the chronic phase of injury may reflect alterations 
in iron and calcium deposition. Personalised quantitative susceptibility mapping may be used 
by clinicians, in the future, to formulate a neuroscience-guided integrative rehabilitation 
program for TBI patients based on their unique lesion load and individual QSM profile, 
together with profiles from other neuroimaging (diffusion or volume) and behavioural 
(cognitive or affective) domains. 
 
References: [1] Gozt A, et al. Neuroscience. 2021 Jul 15;467:218-236. [2] Stewart AW, et al. Magn Reson Med. 2022 
Mar;87(3):1289-1300 
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Introduction 
Deep learning has shown potential to facilitate significant dose-reduction factors in MR-PET 
imaging. Clinical application of these methods is limited by the reliability when applied to data 
outside the distribution of training data. This work presents a deep learning-based method 
which leverages reliable information from MR images for consistent performance on PET 
images acquired at varying dose levels. 
 
Methods  
A disentangled latent space representation as shown in 
figure 1 is used to separate information into MR-PET 
mutual features and PET specific features, which are 
mixed and mapped to standard-dose PET. A total of 28 
F18-FDG PET brain images were used for training (22), 
validation (2) and testing (4). Low-dose PET data at x2 
and x100 dose reduction (DR) was synthesised by Poisson 
resampling of the standard dose sinograms. The 
proposed network architecture and a Unet1 were trained 
to map x2 low-dose PET to standard-dose PET and tested 
on x2 and x100 low-dose data. The total loss function for 
the proposed architecture is defined as 

𝐿)*)+, = 𝑙-𝐿- +	𝑙.𝐿. +		 𝑙/𝐿/ +	𝑙0𝐿0 
Where 𝐿- and 𝐿. are L2 data consistency, 𝐿/ constrains 
the amount of PET information allowed through the 
network, 𝐿0 is mutual feature consistency between PET 
and MR, and 𝑙- , 𝑙., 𝑙/, 𝑙0 are set to 1.0, 1.0, 3.0 and 10.0 
respectively. Image quality was evaluated using SSIM2 
and PSNR, and quantitative accuracy was evaluated 
using relative absolute error. 
 
Results 
Figure 2 shows standard dose images synthesised with 
the proposed architecture and with the reference Unet 
at x2 and x100 DR inputs and the spatial distribution of 
relative absolute error. SSIM and PSNR of reconstructed 
images at x2 DR and x100 DR are (0.92,32.42) and 
(0.88,30.12) for the proposed architecture, and (0.96, 
36.12) and (0.76,23.3) for the Unet.  
 
 

Figure 3: Mutual features 𝐹! and 𝐹" are 
extracted from MR and PET respectively, 
while PET specific features 𝛬 and 𝑐" are 
extracted from PET.   

Figure 4: Low-dose to standard-dose 
mapping for x2 low-dose PET and previously 
unseen x100 low-dose PET for the proposed 
architecture and a Unet. 
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Discussion 
The proposed architecture performs consistently on x2 DR data and previously unseen x100 
DR data at the cost of degraded performance on in-distribution data. The proposed method 
in combination with standard-supervised training provides a means of maximising 
performance in distribution whilst providing robust performance on outlier cases with 
significantly further reduced dose. The utility of the proposed method is also predicated on 
MR images being reliably consistent with those used in training. 
 
Conclusion 
The proposed method provides consistent performance on x2 DR and previously unseen x100 
DR PET images, providing a means of reliably handling outlier cases of further reduced dose. 
 
References 
1Ronneberger et al., MICCAI 2015. 
2Wang et al., IEEE Trans. Image Process., 2004 
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Introduction 
Spatially selective RF excitation pulses have been used previously to encode MR images using 
non-Fourier basis sets such as wavelet encoding and SVD decomposition 1,2,3. We exploit the 
linear response model4 of selective excitation and introduce double-RF pulses that encode 
the magnetisation using sinusoidally-modulated waveforms. We present a proof-of-principle 
that together, these excitation profiles generate the traditional Fourier encoding basis and a 
3DBEE image volume can be directly recovered by inverse Fourier transform. 
 

Theory and Methods  
In 3D image acquisition, the signal at every point in kspace can be formulated as: 

 𝑆"𝑘! , 𝑘", 𝑘#% = '' '𝑀(𝑥, 𝑦, 𝑧)𝑒$%&!!𝑒$%&""𝑒$%&##
#"

	
!

	, (1) 

where 𝑀(𝑥, 𝑦, 𝑧) is the underlying magnetization and 𝑘1,𝑘2,𝑘- are kspace coordinates. 
Substituting 𝑒345'- = 𝑐𝑜𝑠(𝑘-𝑧) − 𝑗𝑠𝑖𝑛(𝑘-𝑧) in Eq. 1 yields: 

 𝑆"𝑘! , 𝑘", 𝑘#% = '' '𝑀(𝑥, 𝑦, 𝑧)𝑒$%&!!𝑒$%&"" (cos(𝑘#𝑧) − 𝑗𝑠𝑖𝑛(𝑘#𝑧))
#"

	
!

	, (2) 

The cosine and sine terms in Eq. 2 can be moved to the RF excitation profile, eliminating the 
need to use gradient encoding in the slice direction. Cosine and sine modulated slice profiles 
can be achieved by double-RF pulses with variable time 
shifts, Δ. Fig. 1 shows exemplar double-pulses with their 
corresponding cosine-modulated slice profiles. Sine-
modulated profiles are achieved by applying phases of 
90° and -90° to the first, and second pulse respectively.  
An in-house 3D printed resolution phantom was scanned 
using 3DBEE via a modified Flash sequence (slab 
thickness = 7 mm, 21 slices of thickness = 0.33 mm, TE = 
20 ms, TR = 500 ms, BW= 390 Hz/pix, FA = 15°, in-plane 
resolution = 0.78 × 0.78 mm, scan time = 47 minutes). 
For comparison the phantom was also scanned using a 3D 
FLASH sequence with the same parameters. 
 

Results 
Fig. 2 shows exemplar axial (A) 
and sagittal (B) slices of the 
phantom acquired using 3DBEE 
and 3D FLASH. Both the same 
contrast and structural 
information is achieved. 

Discussion and Conclusion 
The 3D Basis Encoded Excitation 
(3DBEE) acquisition method has 
been demonstrated using 
double-RF pulses. The double-

Figure 1: A) Exemplar double-RF pulses with 
variable time shifts, Δ.  B) cosine-modulated 
slice profiles. 

Figure 2: Exemplar A) Axial and B) Sagittal slices of 3DBEE and FLASH 
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RF pulses generate sinusoidally-modulated excitation profiles with variable frequencies that 
fill the traditional slice-phase-encode dimension of 3D kspace. The pulses used in the 
acquisition have half the SAR of the slab selective pulsed applied in conventional 3D 
acquisition. Ongoing work is demonstrating the advantage of 3DBEE over 3D conventional 
encoding for slice accelerated parallel imaging. 
 

References 
[1] Bolinger and Leigh. JMR. 1988. [2] Gelman and Wood.MRM.1996. [3] Panych et a. lMRM.1996. [4] Panych et al.  Int J 
Imaging Syst Technol.1999. 
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Introduction 
Abdominal organ segmentation is a common task for analysing MRI data for various 
applications. However, annotating 3D organ volumes is time-consuming and needs 
anatomical expertise. Deep learning offers an opportunity to automate this task but requires 
large amounts of training data. To save time in generating training datasets, new AI-assisted 
labelling methods have evolved, such as MONAI Label [1]. There are two interactive models 
available through MONAI Label: deepedit and deepgrow. However, these models are both 
trained on CT data, and are not readily applicable for MRI data. In this work, we adjust 
deepedit and deepgrow for an abdominal MRI dataset to investigate the effectiveness of 
interactively annotating organs to build a large training dataset for automated segmentation. 
Methods  
The dataset includes T2-weighted abdominal Dixon MRI images from 975 Gen2 participants 
at 27-years of age from the Raine Study in Perth, WA, using a Siemens Magnetom Espree 1.5T 
(Siemens AG, Erlangen, Germany). The Dixon sequence yields both water and fat intensity 
data; for organ labelling, we use the water images. As a pre-processing step, we applied 
intensity normalization to all images. We modified and interactively trained deepedit and 
deepgrow on a small subset of the dataset – 16 images for training, 4 images for validation, 
and 9 images for testing. We manually labelled the pancreas. Then, we trained deepedit, 
deepgrow 2d, and deepgrow 3d interactively using an NVIDIA T4 GPU accelerator and 
Neurodesk [2]. Finally, we determined model’s performance of three algorithms: deepedit, 
deepgrow 3d, and deepgrow pipeline (combination of deepgrow 2d and deepgrow 3d). For 
deepedit, we used a fully automated inference, while for deepgrow we used semi-automated 
inference through guide points. 
Results 
First, we found that the default intensity transform (originally designed for CT data) is not 
suitable for MRI data and we had to remove it from the pipeline of all models. Next, we 
evaluated the models’ performance in terms of training time, inference time, and Dice 
coefficients. Table 1 lists the training time and inference time. Figure 1 shows the Dice 
coefficient of the testset; a prediction of deepedit is shown in Figure 2 as an example. 

Table 1Training and inference time for all used models 

 deepedit deepgrow2d deepgrow3d deepgrow pipeline 
train 44 mins 11 mins 7 hrs 56 mins  
infer 0.9 s/3D 0.7 s/2D 2.1 s/3D 5 s/3D 

   
Figure 1 Dice coefficient of testset                                                         Figure 2 Prediction vs Manual Label 
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Discussion and Conclusion 
Deepgrow 3d generated, on average, the best prediction for the pancreas but with the longest 
training time and deepedit had the most unstable accuracy. Deepgrow 2d showed a wide 
range of label noise across the abdomen and it was very time-consuming to select guide 
points. Furthermore, the deepgrow pipeline is very sensitive to guide points, making the 
prediction highly depend on user input. In conclusion, after pre-processing the MRI data, 
MONAI Label enabled the AI assisted generation of label data for abdominal MRI scans. 
References 
[1] A.Diaz-Pinto et al. MONAI Label: A framework for AI-assisted Interactive Labelling of 3D Medical Images. 2022. [2] 
Neurodesk. https://www.neurodesk.org 
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Introduction  
Fibre-tracking and fixel-based analyses are valuable neurological tools1,2 but require long Diffusion Weighted 
(DW) acquisitions, often over 10 minutes even with multiband acquisitions3. However, skipping some DW 
directions and synthesizing their images offline4,5 could provide high acceleration. This interpolation of DW 
images in q-space4 can be done linearly on a voxel basis5, but deep-learning networks could offer more 
accuracy and higher acceleration rates (R) from non-parametric diffusion models and local-neighbourhood 
information exploitation.   
  

Methods   
We developed a shallow, densely connected network using 
TensorFlow6 illustrated in figure 1. It synthesizes Nout target DW-
volumes on a per voxel basis from Nin acquired DW volumes, 
giving R= Nin / (Nin+ Nout). Each layer uses “reLU” activation.   
Training and validation datasets were respectively gathered from 20 and 40 subjects of the HCP database7, 
with 90 directions at b=1000 s/mm², b=3000 s/mm², and a single b=0 s/mm² volume, with Nin = 31 and Nout= 
60 for R≈3.  Input DW-directions were chosen to best match a 3D golden angle sampling scheme. Training 
using a “MSE” loss-function was completed over 100 epochs on the MASSIVE supercomputer8.   A linear 
spherical-interpolation model was also trained from the same datasets for comparison.   
  

Results  
An example comparison of synthesized images is 
shown in figure 2. The target image as acquired by 
the scanner is referred to as gold standard.  The linear 
model exhibits local errors in regions corresponding 
to important fibre tracks such as the optic radiations. 
In comparison, the network clearly reduces these 
errors.    
  

Discussion&Conclusion  
The proposed network is small but highly nonlinear 
and uses spatial-neighbourhood information. It 
appears to capture a better  
inherent diffusion model than linear interpolation  
approach. The small number of parameters    
allows fast, reproducible training without need for additional regularization. It is a promising approach for 
significantly accelerating data acquisition for connectome and fixel-based analysis, with results corresponding 
here to a threefold reduction in acquisition time.   
  

  Figure 1  –   Proposed Network Architecture.     

Figure  2   –   Reconstruction at  b=3000   s/mm²   
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Introduction 
Long acquisition times are a significant limitation in the clinical utility of diagnostic MRI. Whilst 
acquisition times can be reduced by under-sampling the measurements in k-space, there is a 
resultant loss of quality in the reconstructed image. Recently, artificial intelligence and 
specifically deep learning models have been utilized to transform low-quality images into 
high-quality images by training the models on large cohorts of data. The self-attention-based 
transformer networks1 have become the state-of-the-art in deep learning models. In this 
work, we assess the capability of transformer networks for accelerated MRI reconstruction 
and compare how the models perform in image and k-space domains. 
 
Methods 
Let 𝑦 represent the fully sampled k-space and 𝑥 represent its corresponding clean image. 
Then, 𝑥 and 𝑦 constitute a Fourier pair, i.e., 𝑦 = 𝐹𝑥 and 𝑥 = 𝐹3&𝑦 where 𝐹 and 𝐹3& represent 
the Fourier and inverse Fourier transforms respectively. In accelerated imaging, MR 
measurements are often undersampled resulting in an incomplete k-space, 𝑦6 and its 
corresponding aliased image,	 𝑥6. In this work, we analyse the capabilities of transformer 
networks for accelerated reconstruction between different pairs of domains: (a) image to 
image, (b) k-space to k-space, (c) k-space to image, and (d) image to k-space. Let 𝑇7 be the 
mapping function representing the transformer network with parameters	𝜃. Then the training 
processes for the above four models reduce to Eq. (1), (2), (3), and (4) respectively: 

𝜃+∗ = 𝑎𝑟𝑔𝑚𝑖𝑛7F𝐿G𝑥, 𝑇7(𝑥6)HI	 (1) 𝜃9∗ = 𝑎𝑟𝑔𝑚𝑖𝑛7F𝐿G𝑥, 𝐹3&𝑇7(𝑦6)HI	 (2) 
𝜃:∗ = 𝑎𝑟𝑔𝑚𝑖𝑛7F𝐿G𝑥, 𝑇7(𝑦6)HI	 (3) 𝜃;∗ = 𝑎𝑟𝑔𝑚𝑖𝑛7F𝐿G𝑥, 𝐹3&𝑇7(𝑥6)HI	 (4) 

 
We implemented a cascade of Swin-Unets2 with interleaved data consistency blocks as the 
mapping function, 𝑇7. We performed random 1D undersampling on k-space in the phase 
direction with an acceleration factor of 4. We utilized the 𝑙&-norm as the loss function to train 
our models on 3096 T1W transverse brain slices (sampled from the fastMRI3 dataset which 
were obtained on 3 and 1.5 Tesla MR scanners) for 100 epochs. 
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Results 
Table 1 presents a quantitative evaluation of the validation set and Figure 1 depicts an 
example reconstruction. 
 

Table 1: Average NMSE, PSNR, and SSIM scores evaluated on the validation set 
Metric model (a) model (b) model (c) model (d) 
NMSE 0.0055 0.0153 0.0349 0.0286 
PSNR 39.51 35.13 31.54 32.33 
SSIM 0.9487 0.9031 0.8534 0.8579 

Fig 1: 
Reconstructions of a 

T1W transverse 
brain section from 
the validation set 
using (a) image to 
image, (b) k-space 
to k-space, (c) k-

space to image, and 
(d) image to k-space 

transformer 
models. 

 
Discussion & Conclusion 
The quantitative and qualitative results confirm the capability of self-attention-based 
transformer networks to reconstruct high-quality images when utilized in an image-to-image 
mapping setting. Furthermore, k-space to k-space mapping performs better than the other 
cross-domain mappings. However, all models except image-to-image mapping lack the ability 
to accurately remove aliasing artefacts. 
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Introduction 
Vitreous humour is a clear gel-like fluid that fills the space between the lens and the retina to 
support the structure of the eye, which has been found to play an essential function in oxygen 
regulation and distribution within the eye recently. As the vitreous undergoes age-related 
liquefaction or is surgically removed (vitrectomy), this function is impaired, resulting in 
increased intraocular oxygen tension and the increased risk of age-related eye diseases. 
However, approaches to measuring oxygen levels in the vitreous humour involve invasive 
methods. In this study, we utilised MRI T1 and T2 mapping, along with experimental 
approaches to measure the oxygen partial pressure (pO2) and the viscosity of the vitreous in 
a non-invasive manner. 
 
Methods  
Oxygen phantom (n = 3) was made of distilled water bubbled with nitrogen to vary the pO2, 
ranging from 10 mmHg to 86 mmHg. pO2 was measured with an oxygen-sensitive fibreoptic 
probe (Oxylite, Oxford optronic). The phantom was scanned by a 3T clinical MRI (VIDA, 
Siemens) equipped with a 32-head head channel. All imaging sequences had a Field of View 
(FOV) of 140 × 140 mm and a matrix size of 384 × 384. T1 mapping utilised a turbo-spin echo 
(TSE) with inversion recovery at six different inversion times (TI): 50, 860, 1880, 3240, 5340 
and 10000 ms, and with a constant repetition time (TR) of 16000 ms and echo time (TE) of 8.6 
ms. The T2 mapping utilised the same TSE with different TEs at 175, 400, 650, 900, 1150, 1400 
and 1630 ms with a constant TR of 12000ms. Acquired images were fitted to calculate the T1 
and T2 values using customised-written codes. T1 values were correlated with the measured 
pO2 of the phantom2, while T2 values were correlated with the viscosity measurements using 
our established methods1. NZ white rabbits (N=3) were used to pharmacologically induce 
vitreous liquefaction by intravitreal injection of hyaluronidase (0.25U/ml) in the right eye 
(treated). The left eye was untouched as it was the control eye (control). Rabbits were 
scanned after 8 weeks of the initial injection to measure pO2 and the viscosity of the vitreous 
in control versus treated eyes. 
 
Results 
After adjusting the measured T1 with a temperature calibration2, there was a strong positive 
relationship between R1 (1/s) and pO2 (mmHg). The calibration was characterised by R1 = 
pO2×2.18e-3 + 0.199 [R2 = 95.6%]. The R2 (1/s) also highly correlated with the viscosity 
measurement: storage modulus (G’), loss modulus (G”) and complex viscosity (η*)1. The 
measured R1 and R2 of the rabbit eye were converted to pO2 and viscosity. The treated eye 
revealed increased pO2 levels compared to the control eye [Control: 16.27 ± 2.45 mmHg, 
Treated: 23.62 ± 3.95 mmHg] and decreased viscosity as evidenced by  lower G’ [Control: 0.23 
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± 0.03 Pa, Treat: 0.09 ± 0.01 Pa] , G” [Control: 0.16 ± 0.02 Pa, Treat: 0.09 ± 0.01 Pa] and η* 
[Control: 0.03 ± 0.004 Pa, Treat: 0.013 ± 0.001 Pa] values compared with the control eye.  
 
Discussion 
Hyaluronidase breaks down the collagen network that progressively liquefies the vitreous 
body to increase vitreous pO2 levels and decrease viscosity. Our MRI protocols could 
accurately detect these changes in our rabbit model of vitreous liquefaction. 
 
Conclusion 
We have developed a non-invasive MRI-based technique that has the potential to be 
implemented clinically to investigate changes to the vitreous in-vivo. Our next step is to utilise 
our technique in human participants to monitor changes to the vitreous caused by normal 
ageing and/or vitreous removal to identify strategies that minimise pO2 levels and preserve 
overall ocular health. 
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Introduction 
Numerous algorithms were developed to solve the dipole inversion problem of QSM, 
however, they generally share a long computation time. With multi-echo acquisitions 
becoming more popular for QSM, one way of combining the information into one volume is 
to average the final QSMs [1-2], which multiplies the computation time by the number of 
echoes. A range of Laplacian based methods for combining echo data before dipole 
inversion were investigated previously [3], but using a quantitative unwrapping procedure 
could have significant benefits over Laplacian methods. Here, we investigate how a 
quantitatively unwrapped multi-echo phase combination performs for combining multi-
echo data for QSM processing. 
 
Methods  
Two datasets were used, the in-silico head phantom in 1mm isotropic resolution from the 
QSM challenge [4] and an in-vivo data set acquired at 7 T, where coil-combination and phase 
offset removal were performed using ASPIRE [5]. We compare four different QSM processing 
pipelines, i) Laplacian - Weighted-average QSM, where the multi-echo QSM data was 
averaged in the end, ii) ROMEO -  Weighted-average QSM, where the unwrapping was 
performed using ROMEO [6], iii) Laplacian - Combined Phase, where the echo-combination 
was performed directly on the unwrapped phase, and iv) ROMEO B0 - Combined, where 
ROMEO B0 estimation was applied. Inverse-variance-weighted echo-combination was 
applied to combine phase and QSM respectively, and the same mask was applied in all 
pipelines. The mask was obtained by thresholding the phase quality map from the 
quantitative unwrapping procedure ROMEO. The background field correction vsharp and the 
Dipole inversion RTS [7] were performed on all pipelines using QSM.jl 
[https://github.com/kamesy/QSM.jl]. 
 
Results 

 
The ROMEO approaches were more accurate on the QSM challenge data. With in-vivo data, 
the visual appearance was similar with all 4 pipelines in regions of high phase SNR, while 
Laplacian – Combined Phase was affected by higher noise in regions of lower phase SNR.  
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Left Figure: Laplacian Combined 
Phase has reduced SNR compared 
with the other approaches. This is 
less visible in areas of high phase 
SNR (not shown). 
Right Figure: The distribution of the 
susceptibility error as a difference 
to the ground truth of the 
simulated QSM challenge dataset. 
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Discussion and Conclusion 
Background field removal and dipole inversion are usually the most time-consuming steps, 
and both are reduced by a factor corresponding to the number of echoes in the Combined 
Phase approaches. However, directly combining the phase after Laplacian unwrapping leads 
to reduced SNR in the QSM. This doesn’t affect the ROMEO B0 approach, enabling efficient 
and high SNR QSM calculation. The ROMEO B0 calculation requires phase offset removal, 
which was performed by the computationally efficient ASPIRE method. The greatly reduced 
runtime might benefit transition into clinical practice. 
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Introduction 
Structures of the deep grey matter (DGM) play crucial roles in cognitive, sensory, and motor 
functions. MRI has vastly improved our knowledge on brain anatomy and functionalities in 
recent years, however, less is known about the DGM than other parts of the brain, such as 
the cortex.  Neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases are 
known to implicate DGM structures such as the globus pallidus, putamen, thalamic nuclei and 
caudate1,2. MRI is sensitive to the changes caused by these pathologies (e.g., demyelination, 
iron deposition, etc) and specialised techniques, like diffusion-weighted imaging (DWI) and 
quantitative susceptibility mapping (QSM) can probe the structural and compositional 
properties of DGM and allow MRI-based characterisation1-4. This project evaluates DGM 
structures using multi-contrast MRI to assess microenvironments specific to individual DGM 
structures, with a goal of establishing baseline values for DGM in normal brains. 
 
Methods  
Images were acquired for 5 healthy subjects, with a 3T MRI scanner (Prisma, Siemens 
Healthcare, Erlangen, Germany) and a 64-channel head coil using NODDI protocol2. Diffusion-
weighted images (DWI) were taken with b-value 0 (8 averages)/1000 (27 directions)/2500 (62 
directions) smm-2, 2 mm3 isotropic resolution, 75 ms TE and 4.1 s TR. 3D Gradient echo (GRE) 
data was obtained in the same session, using 18° flip angle, 124 ms TR and 1.25 mm3 isotropic 
resolution, Magnetisation Transfer (MT) ON (15 echoes with 2.37 – 52.63 ms TE) and MT OFF 
(25 echoes with 2.37 – 120 ms TE). DWI were processed using MRTrix 3.03, QSM with QSMxT4 
and Magnetisation Transfer Ratio (MTR) with Matlab (R2022a, Mathworks, Natick, MA). For 
each subject, DGM structures were isolated using Freesurfer segmentation (using T1w images 
from the same subjects) and mean values were measured for fractional anisotropy (FA), mean 
diffusivity (MD), QSM, and MTR. 
 
Results (C = Caudate, PU = Putamen, PA = Pallidum, T = Thalamus) 

The figures above show FA, MD, Magnetic Susceptibility (MS) and MTR for the caudate, 
putamen, pallidum, and thalamus. The Pallidum was found to have the highest FA and MS, 
while the thalamus displayed low MD and MS but the highest MTR. The error bars suggest 
that the parameters measured from thalamus had higher variability across subjects for all but 
the MS. 
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Discussion and Conclusions 
The thalamus also contains less iron than the other structures, which is reflected in its lower 
magnetic susceptibility5. Furthermore, it is known that in white matter, diffusivity is 
negatively correlated with anisotropy1, and this was found to also be true in deep grey matter 
for some structures. To note, parameters measured from each DGM structure were 
consistent across subjects. This work demonstrates the potentials for establishing baseline 
diffusion and susceptibility scores for DGM structures. Having these baseline values can 
facilitate the MRI-based evaluation of DGM structures in future, whether normal or 
pathological. In the future, we will incorporate data from a large cohort for the results to 
represent normal population.  
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Introduction 
Visual snow syndrome (VSS) is a neurological disorder characterized by a range of continuous 
visual disturbances. Little is known about the functional pathological mechanisms underlying 
VSS and their effect on brain network topology. The aim of this study was to characterize 
network dynamics in VSS patients using high-resolution resting-state (RS) 7T MRI.   
 
Methods  
Forty VSS patients and 60 controls underwent RS MRI. 
Functional connectivity matrices were calculated, and 
global efficiency (network integration), modularity 
(network segregation), local efficiency (connectedness 
neighbours) and eigen vector centrality (significance 
node in a network) were derived using a dynamic 
approach (temporal fluctuations during acquisition) 
(Figure 1). Network measures were compared between 
groups, with regions of significant difference correlated 
with known aberrant ocular motor VSS metrics in VSS. Lastly, nodal co-modularity, a binary 
measure of node pairs belonging to the same module, was studied. 
 
Results 
VSS patients had lower modularity, supramarginal centrality and local efficiency dynamics of 
multiple (sub)cortical regions, centred around the occipital and parietal lobules (Figure 2). 
Local efficiency dynamics of the lateral occipital cortex correlated with shortened prosaccade 
latencies in VSS patients (p=0.041, r=0.353). Further, in VSS patients, occipital, parietal and 
motor nodes belonged more often to the same module and demonstrated lower nodal co-
modularity with temporal and frontal regions (Figure 3). 
 

 
 

 
 

Figure 1. Overview network analyses pipeline. 

Figure 2. Reduced network dynamics in VSS patients. A) T-values 
and B) p-values (–log10) for group comparisons of local efficiency 
dynamics between controls and VSS patients. 

 

Figure 3. Conodal modularity. The colour indicates the proportion 
of subjects where node pairs were members of the same 
module. Abbreviations: DGM=deep grey matter, S1=primary 
somatosensory cortex, M1=primary motor cortex. 
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Conclusion 
This study revealed reduced dynamic variation in modularity and local efficiency strength in 
VSS patients, suggesting that brain network dynamics are less variable in terms of segregation 
and local clustering. Changes were widespread, but strongest effects were observed in 
occipital cortices, related to oculomotor motor processing. 
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Introduction 
Attention deficit hyperactivity disorder (ADHD) is a prevalent childhood 
neurodevelopmental disorder. The application of graph theory to functional and structural 
connectomes has enhanced the understanding of functional and structural 
differences/alterations in neurodevelopmental disorders. Given the profound brain changes 
that occur during childhood and adolescence, it is important to examine longitudinal 
changes of both functional and structural brain connectivity across development in ADHD. 
This study aimed to examine the development of functional and structural connectivity in 
children with ADHD compared to controls using graph metrics. 

Methods  
175 individuals (91 children with ADHD and 84 non-ADHD controls) participated in a 
longitudinal neuroimaging study with up to three waves. The whole brain functional and 
structural connectivity matrix for each subject was defined using the multi-modal 
parcellation of human cerebral cortex (HCP-MMP) atlas.Graph metrics such as degree, local 
efficiency and betweenness centrality were extracted using Brain connectivity toolbox2 from 
370 resting state fMRI (197 Control, 173 ADHD) and 297 diffusion weighted imaging data 
(152 Control, 145 ADHD) acquired between the ages of 9 and 14. The developmental 
changes of each graph theoretical measure in children with ADHD vs typically developing 
controls were examined with Generalized Additive Mixed Models (GAMM), using the 
“mgcv” package in R. 
 
Results 
Compared to typically developing children, children with ADHD showed significant group 
differences and differential developmental trajectories for degree, local efficiency (LE) and 
betweenness centrality (BC), predominantly in higher-order cognitive and sensory regions 
such as anterior cingulate, posterior cingulate, frontal opercular cortex, superior temporal 
gyrus, inferior parietal cortex and visual regions. 
 
Discussion 
Our study demonstrated topology of functional and structural connectomes that mature 
differently between typically developing controls and children with ADHD across childhood 
and adolescence. In particular, similar networks of the brain, predominantly featuring 
higher-order cognitive and sensory regions, were affected in the functional and structural 
topology of children with ADHD relative to typically developing children, providing 
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converging evidence that structural and functional connectivity in these cortical regions are 
strongly implicated in children with ADHD.  
 
Conclusion 
Our findings indicate that the differential development of  functional and structural 
connectivity observed in the brain regions involved in transferring neural signals across and 
between multiple higher order cognitive and sensory regions may be one explanation for 
the various higher order cognitive dysfunctions in children with ADHD. However, future 
studies examining the association between structural abnormalities and neurocognitve 
measures in children with ADHD are required to explore this further. 
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Introduction: Cannabis use disorders (CUD) are highly prevalent. Exposure to cannabis cues 

can trigger craving and compulsive use in people with a CUD and undermine their attempts 

cut down or quit1. fMRI findings in cannabis users exposed to cannabis cues vs neutral cues 

show different brain function and connectivity in prefrontal, striatal and parietal activity, in 

association with greater self-report craving. This study aims to characterise brain function 

associated with cue-reactivity (cannabis vs neutral cues) for the first time in cannabis users 

with a diagnosis of moderate-to-severe CUD vs controls, and how group differences in brain 

function are associated with cannabis craving and psychopathology symptoms. 

 

Methods: All the pre-processing steps were performed using fMRIPrep 22.32. To examine 

cannabis-specific cue reactivity differences between 49 people with a CUD (14 female) and 

30 controls (15 female) aged 18-56 years; two subtraction contrasts were created: Can > 

Neutral and Can < Neutral and GLM was performed using SPM12. We explored how group 

differences in brain function correlated with: cannabis craving, CUD symptoms, arousal 

ratings of cannabis images and cannabis exposure metrics (i.e., dosage, duration of regular 

use, age of onset, abstinence duration). 

 

Results: Greater activity was found in the CUD vs controls was found during exposure 

cannabis vs neutral images in the lingual gyrus (FWE-corrected), and in other areas - middle 

frontal gyrus, medial orbitofrontal cortex and cerebellum (p < 0.001; cluster k > 10). Positive 

correlations emerged between the activity of the middle frontal gyrus and cannabis 

grams/past month.  

 

Discussion: The brain pathways showed to differ in CUD than controls, partly overlap with 

those reportedly altered in other substance use disorders and align to prominent 
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neuroscientific theories of addiction. Widespread brain activations during cannabis cue-

reactivity may be ascribed to altered salience and attentional processes associated with CUD, 

and future longitudinal studies are required to elucidate if neurobiological alterations in CUD 

predate or follow CUD onset.  

 

References: [1] Hindocha C, Freeman TP, Ferris JA, Lynskey MT, Winstock AR. No smoke without tobacco: a global 

overview of cannabis and tobacco routes of administration and their association with intention to quit. Front Psych. 2016;7:1-

9. https://doi.org/10.3389/fpsyt.2016.00104 [2] Esteban O, Markiewicz CJ, Blair RW, et al. fMRIPrep: a robust preprocessing 

pipeline for functional MRI. Nat Methods. 2019;16(1): 111-116. https://doi.org/10.1038/s41592-018-0235-4 
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Introduction  
Computational results of neuroimaging pipelines depend on the operating system being 
used due to version differences in underlying libraries, such as glibc. This reproducibility 
issue was quantified for several MRI analysis tools by Glatard et al1. Neurodesk 
(www.neurodesk.org) is a platform that aims to increase accessibility and reproducibility by 
packaging every pipeline into a software container and thereby can control the underlying 
dependencies regardless of the operating system. To evaluate the computational 
reproducibility of this approach, we compared brain tissue segmentation using FMRIB 
Software Library (FSL) on Neurodesk vs. Local installation on two different Linux 
distributions.  
  

Methods   
FSL 6.0.5.1 was built in Neurodesk and was natively run on two Linux systems resulting in 4 
setups (Figure A). Local A: Ubuntu 20.04 with glibc 2.31, Local B: AlmaLinux 8.5 with glibc 
2.2.8, and Neurodesk A and B: Ubuntu 16.04.7 with glibc 2.2.3. We segmented the cortical 
and subcortical structures of 157 T1-weighted magnetic resonance (MR) images from the 
International Consortium for Brain Mapping using FSL BET (brain extraction), FAST (tissue 
classification), FLIRT (image registration) and FIRST (subcortical tissue segmentation). The 
outputs from the four systems were compared pairwise: local system A vs B, Neurodesk on 
A vs B. System calls from FSL are recorded using ltrace for a single subject to validate that 
homogenizing the computing system resolves the reproducibility issue.  
  

Results  
The checksums showed that BET and FAST produced identical results inter-run and 
intersystem. For FLIRT and FIRST, the Dice coefficient indicated significant differences 
across local installations, while mostly remaining identical across Neurodesk setups (Figure 
B). The mismatch in subcortical segmentation occurred at the edges of each structure 
(Figure D). The records of library calls are different between locally installed FSL (Figure C) 
and were consistent across Neurodesk setups.  
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Discussion and Conclusion  

FSL is dynamically linked to use system libraries such as glibc and thus results may vary due 
to the system library version. The library call records indicate that the system version has a 
significant effect on reproducibility. Neurodesk addresses the reproducibility issue for 
dynamically linked tools by maintaining the same system version across computing 
environments.  
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Introduction  
Adiabatic pulses are commonly used in ultra-high field imaging for their insensitivity to B1 
field inhomogeneity. For conventional RF pulses, the slice profile may be approximated by 
the Fourier transform of the pulse envelope for flip angles up to approximately 90°1, 
however, this approximation is unable to describe adiabatic pulse behaviour. In this work 
we present a new method for approximating the slice profile produced by adiabatic pulses 
in the presence of a constant gradient.   

Theory  
Analysis of adiabatic pulses can be simplified if it is assumed that the angle between the 
bulk magnetisation and the z-axis is equal to that of the effective field produced by an 
adiabatic pulse. Under this assumption, the transverse magnetisation as a function of 
constant off-resonance frequency can be approximated by the Fourier transform of a 
function of the pulse envelope:  

	
where 𝑀𝑥𝑦 is transverse magnetisation, 𝛥𝜔0 is off-resonance frequency, 𝜔1 is the RF pulse 
envelope as a complex number, 𝛼𝐴𝑑 is the angle of adiabatic pulse effective field with the z-
axis and 𝑡 is time.  

Methods   
The behaviour of the adiabatic approximation was investigated through comparison with 
Bloch equation simulations. The adiabatic approximation and Bloch equations were 
simulated using ode45 in MATLAB (Natick, Massachusetts, USA). A sin/cos adiabatic half 
passage pulse2 was investigated, with pulse duration = 4ms, maximum pulse frequency 
offset = 2.5kHz, and maximum pulse amplitude ω1/2π = 2kHz. Pulses were simulated over 
off-resonance frequencies, 𝛥𝜔0/2𝜋 = [-5kHz, 5kHz] and pulse amplitude scaling factor, ξ = 
[0,2]. Pulse behaviour not in the adiabatic pulse regime was excluded from analysis. The 
adiabatic condition was defined as not being sufficiently satisfied when Q<5, where Q is the 
maximum value given by the ratio of the amplitude of the pulse’s effective field, ωeff, and 
the angular rate of the effective field,  
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Results  
The adiabatic 
approximation matched 
the Bloch simulation 
closely where Q > 5 
(Figure 1a,c). In the region 
where Q > 5, the mean 
absolute difference 
between the 
approximation and the 
Bloch solution was 0.023, 
with a maximum 
difference of 0.26.   

 Figure 1: Transverse magnetisation for Adiabatic approximation (AA) vs. Bloch equation. AA (orange), Bloch (blue), adiabaticity factor Q (red). Q<5 indicated 
by grey in (a), and dashed region in (b,c). 

 
Discussion 
The proposed adiabatic approximation accurately calculates adiabatic pulse behaviour when 
the adiabatic condition is satisfied. Unsurprisingly, when Q < 5, magnetisation behaviour is 
less intuitive and may not be well-described by the adiabatic approximation. As the 
adiabatic approximation is represented by a form of the Fourier transform, the Fast Fourier 
Transform algorithm may be used to implement a rapid calculation framework for adiabatic 
pulse envelopes.  

Conclusion  
Our adiabatic approximation demonstrates the existence of a Fourier relationship between 
adiabatic pulse shapes and the resultant slice profile produced when adiabatic pulses are 
applied under constant gradient. This provides novel insight into adiabatic pulse behaviour 
and may be exploited for rapid calculation of adiabatic pulse envelopes.  
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Introduction: MS demyelination and atrophy alter the tissue's diamagnetic properties 
leading to higher tissue magnetic susceptibility1. High levels of iron accumulation have been 
detected in the deep grey matter (DGM) structures of people with MS (pwMS)1. 
Quantitative susceptibility mapping (QSM) is a novel post-processing imaging modality that 
quantifies tissue magnetic susceptibility using a gradient-recalled-echo (GRE) sequence. We 
aimed to characterise the magnetic susceptibility in selected DGM structures with reference 
to medial-frontal white matter for pwMS and healthy controls (HCs). Correlation between 
DGM QSM metrics and selected MS clinical parameters was computed. 
 
Methods: Five relapsing-remitting multiple sclerosis (RRMS) participants and nine age-
matched HC were recruited (mean age: 46±14 yrs). MRI scans were performed on a 3T 
scanner. The STI Suite (v2.2) was used for QSM map reconstruction from 3D GRE images. The 
significant QSM differences associated with selected DGM structures were assessed using 
repeated-measures ANOVA controlling for the reference region. RRMS clinical measures 
included disease duration, cognitive, fatigue, mental health assessment, and Expanded 
Disability Status Scale. Correlations between clinical measurement scores and iron-rich 
regions, accounting for age, were performed using Pearson's correlation. 
 
Results: The RRMS participants showed significantly higher susceptibility compared to HCs in 
the caudate (β= +26.2, p = 0.004), pallidum (β= +38.9, p = 0.006) with a trend toward 
significant for putamen (β= +21.2, p = 0.09), and significantly lower susceptibility in thalamus 
(β= –10.2, p = 0.04). For the RRMS cohort, pallidum, and thalamus QSM values were highly 
correlated with the anxiety scale (r=0.98, r=-0.93, respectively). The dentate nucleus and 
putamen were highly correlated with the disease duration (r=-0.93, r=-0.91, respectively) with 
p<0.05.  
 
Discussion: These preliminary results present novel work assessing magnetic susceptibility 
variations across different DGM and their clinical correlations in RRMS. QSM signals in the 
pallidum and thalamus seem to be strongly correlated with anxiety scores, which is a frequent 
symptom of MS2. Cognitive impairment in MS has repeatedly been correlated with volume 
reduction in the thalamus1. The lower susceptibility in the thalamus region, compared to 
other regions, may come from lower paramagnetic iron components and higher diamagnetic 
components, potentially a consequence of demyelination3. Also, there were strong 
correlations between increasing disease duration with the dentate nucleus and putamen. 
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These findings confirm previous studies demonstrating links between the severity of disease 
duration and QSM values in some DGM regions 4.  
 
Conclusion: These preliminary QSM results from pwMS suggest that neurodegenerative and 
neuroinflammatory processes in DGM (caudate, pallidum, putamen, thalamus, dentate 
nucleus) might lead to clinical symptoms. While the studied cohorts were small, our research 
supports the promising nature of QSM to investigate the contribution of iron in the 
pathophysiology of MS.  
 
References: 1] Zivadinov et al. Radiology. 2018. 2] Fujiwara et al. 
American J. of Neuroradiology, 2017. 3] Jameen et al. J. of the 
Neurological Sciences.2019. 4] Langkammer et al. Radiology 2013. 
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Figure 5 Figure 1. Quantitative susceptibility maps 
within thalamus (purple), caudate (blue), pallidum 
(red) and putamen (yellow) of a 38 years-old female 
RRMS vs. 40years-old female HCs. 
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Introduction: Fixel Based Analysis is being established as the state-of-the-art processing 
pipeline for 1 statistical analysis of white matter alterations, thus replacing lower-order 
models. However, it is evident that there is a need for a readily available anatomical 
reference atlas, such as those available for voxel-based models 2. This often prompts 
researchers to perform manual dissection relying on expert input, or to perform complex 
and highly variable pipelines to translate available voxel-based information into the fixel 
space. To address this issue, we have constructed a probabilistic fixel-based atlas of 72 
anatomically defined bundles represented on a fixel-based template, providing anatomical 
context, streamlining ROI selection, and assisting with the reproducibility of fixel-based 
statistics.  

 
Fig.1: A flowchart representing the different steps performed during atlas construction, as presented in the methods section.  
 

Methods: CSD was performed on the DWI data of 100 subjects from the HCP3 pre-processed 
dataset to calculate FODs. The FOD images were then used to construct a population 
template1 and calculate individual subject wraps from subject to template space. In 
addition, TractSeg 4 was performed on the FOD images all 100 subjects in subject space to 
extract voxel masks for the trajectories, start and end regions of 72 anatomical bundles. 
Trajectory masks were used for seeding, and start and end regions as inclusion regions for 
tractography, and the iFOD2 tracking algorithm was used to generate 20k streamlines per 
bundle. Individual subject warps from the template construction process were used to warp 
tractography results onto the fixel mask in template space and create individual binary fixel 
masks per-bundle, per-subject subject. The bundle masks were then aggregated across the 
100 subjects to create weighted fixel masks for each of the 72 bundles represented on the 
fixel template.   
 
Results: In this work, we delineate the steps taken to construct a fixel-based probabilistic 
atlas. The resulting atlas provides an anatomical reference for 72 major white matter tracts 
with weighted labelling at the fixel level.  



 67 

Discussion: In addition to simple anatomical reference, the atlas can provide further utility 
to benefit the broader neuroscientific community. By enabling automatic anatomical 
parcellation, the atlas can assist with improving accessibility to and standardizing ROI-based 
fibre-specific analysis, enabling easy comparison across studies and with existing literature. 
The probabilistic aspect provides weighted bundle labels, while capturing inter-subject 
variability, encapsulating the complexity of white matter microstructure – thus potentially 
increasing both the specificity and sensitivity of such analysis.     
 
1.Raffelt, D. A. et al., Neuroimage (2017).       2. Mori, S. et al., Neuroimage (2008).      3. Glasser, M. F. et al. Neuroimage  

(2013).          4.Wasserthal, J. et al, Neuroimage  (2018). 
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Introduction 
Federated Learning (FL) could enable the training of powerful algorithms across multiple 
institutions without sharing sensitive data. However, there are two main challenges for FL to 
be used for medical applications: first, even when distributing the annotation workload across 
multiple institutions it is still difficult to yield sufficient training data to train deep learning 
models; second, plain FL does not meet the privacy standards required for medical imaging 
data. With a plain FL training, each institution transfers their model parameters to a central 
server and the server averages the model parameters across institutions. Without additional 
security measures, such a mechanism leads to a model where potentially sensitive training 
data could be extracted from the model [1]. To tackle these two challenges, we combined a 
self-supervised learning task, AutoSeg [2], with a privacy-preserving FL algorithm, Confined 
Gradient Descent (CGD) [3].  
 
Methods  

 

Fig.1 presents our method from the 
perspective of a single client node. The 
client node has many unannotated MRIs 
and few annotated MRIs. The client’s 
goal is to utilise the unannotated MRIs to 
train a model and fine-tune the model 
based on the limited amount of labelled 
data. the whole training process is under 
the privacy preserving FL framework of 
CGD. 
 

In the first step of Fig.1, the client randomly takes two unannotated MRIs to simulate data-
label pairs using AutoSeg. For each iteration, the model randomly generates a batch of 
simulated lesion MRIs for training the model. Then the pretrained model is finetuned using 
real annotated MRIs. 
Instead of plain federated learning (FedAvg), we utilized CGD, where each model first 
initializes their unique model parameters. Then, for each iteration (Fig.1 right), the client 𝑖 
computes its own gradient 𝑔!  based on its own data and own model. Next, it sends 𝑔!  to a 
central server. The central server aggregates the clients’ gradients and sends 𝑔O ∶= ∑ 𝑔!<

!=>  
back to each client model. Each client uses the same gradient 𝑔O to update their unique model. 
Thus, at the end of the training, each client model trains a unique model. We tested a scenario 
where five clients jointly train their own brain segmentation model using a U-Net [4]. For each 
client, we allocate 337 slices of annotated MRIs and 1057 slices of unannotated MRIs from 
the BraTs’20 dataset and we kept the rest for testing (15172 MRI slices). 
 
Results & Discussion 
We found that the self-supervised learning with AutoSeg delivered a dice score of 0.45 and 
fine-tuning with real labels yielded a dice score of 0.7. Our results show that CGD (dice 0.68) 
performs comparable to FedAvg (dice 0.69) and both federated algorithms achieve a 
comparable dice score to the centralized training (dice 0.71). Our results indicate that such a 
framework could overcome the label shortage and protect confidential patient information.   
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Conclusion 
Our study shows that it is possible to accelerate the training of a deep learning model in a 
privacy-preserving fashion using CGD in a task where five clients jointly train a semi-
supervised brain tumour segmentation. 
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Introduction  
Spin density-weighted sodium (23Na) MR imaging for concentration quantification has been 
used in a range of clinical studies, such as stroke, multiple sclerosis and glioma1. However, 
the required scan time is long and hinders practical uptake of 23Na MRI. Prolonged scan 
times can largely be attributed to the limitation of single receiver coils and 3D non-
Cartesian sequences. Consequently, the images are prone to aliasing artifacts. Apodization 
can be used to suppress such artifacts, but it leads to broadened local partial volume effect 
(PVE)2.  Compared to 3D acquisition, 2D imaging has a lower Nyquist limit and an explicit 
slice profile. For 23Na MRI, the UTE-enabled half-pulse excitation (HPE)3 can be used to 
capture the fast-decaying sodium signals. In this work, the use of HPE 2D projection 
reconstruction (PR) is compared with 3DPR in a short scan time (2.5 minutes) to assess 
efficiency and accuracy, and to enable recommendations for future rapid 23Na-MRI 
experiments.  

Methods   
Phantom and in-vivo experiments were performed on a Siemens 7T Magnetom MRI 
scanner with a QED 1H/23Na head coil. A spherical saline phantom was scanned with a 2D 
imaging plane centred on a 6 mm PMMA disc containing a series of saline-filled holes. The 
in-vivo brain scan was performed on a healthy volunteer. HPE 2DPR: half pulse length 
= 3 ms, TE/TR = 0.25/150 ms for spin density weighting, readout = 16 ms, FOV = 200 mm, 
nominal in-plane resolution = 3.1 mm, thickness = 3.1 mm (5 mm for brain). Golden-angle 
readout spokes fully sampled the k-space in 2.5 mins. Undersampled 3DPR: 0.5-ms 
rectangular pulse, TE = 0.1 ms, nominal resolution = 3.1 mm-iso, all other parameters 
matched to 2DPR. In 2.5 minutes, 3D k-space was undersampled by a factor of 12. 
Phantom preprocessing: Spokes were density compensated and Tukey-filtered with 
parameter α = 0 (no apodization), 0.5 and 1 (Hann window). In-vivo preprocessing: A 
Turkey window (α = 0.5) was used. In addition, a densely sampled 3DPR image (25 minutes, 
α = 0) was used as the reference. Tissue concentration measurements were referenced to 
the CSF with an assumed value of 135 mM.   
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Results  
Streaking artifacts were prominent only in 
the undersampled 3DPR images (Fig.1). 
Increasing the apodization reduced the 
streaking, as well as the background noise 
and Gibbs ringing, but it also smoothed the 
image structure. With α = 1, the streaking 
was considerably reduced in the phantom 
3DPR. However, PVE from adjacent slices 
resulted in hyper-intensities in the signal- 
void region, whereas the 2DPR phantom 
images preserved contrast at α = 1, 
maintaining a suppressed background 
intensity.   
The in-vivo 2DPR data showed better visual 
quality than the undersampled 3DPR image 
where the anatomical structure was 
degraded by the aliasing. The mean tissue  

sodium concentrations were 39.2±13.8 mM (2DPR) and 45.3±17.8 mM (3DPR), compared 
to the reference estimate of 37.2±8.8 mM.    

Discussion and Conclusion  

Our comparison of 2DPR and 3DPR for fast 23Na MRI demonstrated that undersampled 
3DPR requires strong apodization to alleviate streaking artifact. This, however, inevitably 
exacerbates smoothing, at the detriment to quantitative capability of 23Na MRI. With an 
apodization window, the measured tissue sodium concentration was elevated by ~22% 
compared to the reference. In contrast, the apodization was contained within the plane in 
2DPR. The measured value in 2DPR increased by 5%, which included some extra 
contribution from the thicker 2D slice. For focused, fast sodium imaging, HPE 2DPR 
provides rapid acquisition and higher fidelity data.  
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Figure 1: Reconstructed phantom & in-vivo 
brain images. 


